Abstract

We study whether climate-related innovation leads to carbon emission reductions by analyzing supply chain networks. We find that climate innovation reduces carbon emissions at customer firms, but only for the supplier firm’s product innovation patents, not its process innovations. The effect is economically significant, dominated by the most emission-intensive customer firms, gradually increases over a five-year horizon, and is significant for customer’s Scope 1 and Scope 2 emissions. We analyze transmission mechanisms by exploring customer firms’ choices of potential suppliers in reaction to supplier climate patent announcements. We show that customer firms generally have a strong preference for suppliers with climate innovations, and that climate innovation helps suppliers attract new customers, particularly those with high environmental ratings or a large carbon footprint. To sharpen the causality, we utilize the quasi-random assignment of examiners to climate patent applications and leverage the exogenous technological obsolescence of climate patents.

Key words: climate change mitigation technologies (CCMTs); climate innovations; supply chain; new customer firms; carbon emissions; ESG scores; discrete choice model
1 Introduction

It is widely assumed that climate innovation will have to play a central role in the global transition to climate neutrality. In its influential transition scenarios to net zero by 2050, the International Energy Agency reckons that half of the reductions in 2050 will come from new technologies that today exist only as prototypes and are not used at scale (IEA, 2021). According to the recent 6th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), climate innovation will have to play a major role in pursuit of the Paris Agreement goals of 2015 (IPCC, 2022).

A lot is at stake for climate innovation and there is also a large production of climate patents: the US patent office USPTO has classified more than 100,000 patent grants after 2000 as climate-related, amounting to about 5% of the total flow of patent grants in recent years. But is there evidence that climate innovation actually has a meaningful and measurable impact on GHG emissions? There is scant micro-level research on this question. Bolton, Kacperczyk, and Wiedemann (2023), the only firm-level analysis, provide sobering evidence by documenting that climate-related patents have no significant impact on the innovators’ carbon emissions, neither for renewable or clean energy technologies (green patents) nor for improvements in fossil energy efficiency (brown patents), and regardless of the horizon considered. Bolton et al. (2023) attribute this finding to a rebound effect, the idea that fossil energy savings may simply induce a larger demand for energy. However, their study has important limitations. Most importantly, they focus on carbon emissions of innovating firms, and in addition look at possible technology spillover effects to industry peers and other firms where they also find no significant effect.

Many climate patents, however, are product innovations and hence the emission benefits should accrue at the customers using the products that incorporate the climate technology. Looking at the innovating firm then misses the place where emission savings are expected to occur. This is a relevant concern: as we show in our study, more than 70% of US climate innovation are product...
innovations, and hence their principal emission impact should not be observable at the innovators.\(^4\) This calls for an investigation of emission effects at customers, in order to extend the analysis whether climate patents make a measurable dent in greenhouse gas (GHG) emissions.

In this paper, therefore, we study the emission impact of climate patents by looking at the emissions of the innovator’s customers. We are also interested in understanding the knowledge diffusion of climate technology in supply chain networks. Once a new climate change technology (CCMT) is developed, in well-functioning markets it should be adopted widely and rapidly. Therefore, we ask: what type of customer firms will generate the largest emission reduction when adopting climate-related product innovation? And do product-related climate patents help innovators to acquire new business customers, and what types of new customers will choose climate innovators as their new suppliers?

To analyze the emission impact in existing supply chain networks, we identify important customers using the FactSet Revere supply chain database, widely used in research on supply chains. We identify as product innovations all patents that we do not classify as process innovations, following the methodology of Bena, Ortiz-Molina, and Simintzi (2022). We find that 71% of climate patents fall into the category of product innovations. We then construct a supplier-firm \(\times\) customer-firm \(\times\) year sample by merging the data from FactSet Revere, the climate patent sample from PatentsView.org dataset, Compustat customer segment data, and Trucost emission data. We consider Scope 1 (direct) and Scope 2 (indirect) emissions,\(^5\) as well as total emissions (in tons of CO2) and emissions intensities (total emissions divided by the firm’s annual output),\(^6\) thus using four different measures of customer carbon emissions. For each customer firm with at least one supplier, we calculate the supplier’s number of new climate patents relative to the number of new general patents.\(^7\)

\(^{4}\)In addition, even for climate patents identified as process innovation, the process technology might be embedded in products and emission reductions could occur downstream. We find no evidence for such a effect for process innovation as a whole.

\(^{5}\)Scope 1 emissions are direct emissions from operations that are owned or controlled by the reporting company. Scope 2 emissions are indirect ones from the generation of purchased or acquired electricity, steam, heating, or cooling consumed by the reporting company.

\(^{6}\)We follow Bolton and Kacperczyk (2021a, 2022) for the latter distinction: given the concern about rebound effects, it is obviously important to look at both total emissions and emissions intensity. Bolton et al. (2023) show no consistent emission impact at the innovator for both measures.

\(^{7}\)We use the Y02/Y04S tagging scheme administered by the USPTO to identify climate patents. If there are multiple suppliers for one customer firm, we use the sales between each supplier and the given customer as weights and calculate the weighted average of the climate patent ratio.
Using panel regressions, we find that more climate patents of suppliers leads to subsequent reductions in CO2 emissions (Scope 1 and 2) of customers. The effect is economically meaningful. For example, an increase in the supplier’s climate patent ratio by one standard deviation reduces Scope 1 emissions of the customer by about 10.7% and emission intensity by about 12.5% over the next five years. The effect is robust when we look at climate patent counts instead of patent ratios. To the best of our knowledge, we are the first to provide firm-level evidence that climate patents generate actual GHG emission reductions.

We are able to confirm this finding in a panel of stable supplier-customer pair with supplier-customer pair fixed effects. This is a first pass to address concerns about selection effects (that is, firms striving to reduce emissions might also select climate innovators as suppliers, without a causal link between supplier climate patents and customer emissions), a question that we revisit later in an instrumental variable analysis. We redo the same analysis for climate patents related to process innovations and find much weaker effects, showing that customer effects are only realized when climate innovation is embedded in products.

We find that the impact is stronger for high-emission customers. Furthermore, while the emission impact is significant in most technology categories of climate innovation, it is particularly strong in the most emission-sensitive sectors energy, transportation, buildings, and weaker and less stable in other categories such as information and communication technologies. It is also more pronounced when the innovator’s main sector belongs to resource extraction (in particular coal mining), manufacturing, or transportation.

In theory, it should be possible to measure customer emissions via downstream Scope 3 emissions of the supplier firm. Scope 3 emissions contain all indirect emissions (not included in Scope 2) that occur in the value chain of the reporting company, including upstream and downstream emissions. Thus, we extend the analysis and look at innovators’ downstream Scope 3 emissions. We find no significant effect of climate patents related to product innovations, echoing similar evidence of Bolton et al. (2023) on downstream Scope 3 emissions. We discuss possible reasons why Scope 3 measures might miss the emission effects in supply chain networks that we document, including the heavy biases in Scope 3 emission data Klaassen and Stoll (2021).

Turning to our questions on the dynamics of knowledge diffusion, we investigate whether climate innovations help suppliers to expand their business and attract new customers. This is a crucial question to understand whether climate technology is indeed widely adopted (Hall and Helmers, 2023).
2010), as assumed e.g. in the IEA (2021) scenarios. “Business stealing” is generally an important question in the innovation literature (Cohen, 2010) and it should be highly relevant when studying the dynamics of supply chain relationships (Pankratz and Schiller, 2021). But curiously, the effect of innovation in attracting new customers has not formally been studied in the supply chain literature so far. Note that it is not obvious that climate innovation will facilitate “business stealing” and the acquisition of new customers: Fowlie (2010) discovers that reducing GHG emissions is costly and therefore not clearly profit-enhancing. Furthermore, suppliers are likely to charge a premium for products embedding climate innovation. On the other hand, growing attention to carbon footprints and corporate climate action creates incentives to reduce emissions even if it is costly.\(^8\)

To test this hypothesis, we first try to understand the customer’s preferences for suppliers featuring climate innovation. We construct an empirical discrete choice model (McFadden, 1974) regarding the selection of potential suppliers by customer firms.\(^9\) For each customer firm that has at least one supplier in a given year, we create a set of alternatives (potential suppliers) that consists of two categories. The first category includes suppliers that are selected by the customer firm. The second category includes suppliers that produce similar products to the selected suppliers but are not chosen by the customer. To obtain the second set of suppliers (the ones not selected), we utilize Hoberg and Phillips (2016)’s text-based product descriptions and network industry classification (TNIC). In our regression analysis, we find strong evidence that customers have a significant preference for suppliers with climate innovation. Specifically, an increase in the interquartile range of the climate patent ratio is associated with a 12% increase in the probability of selecting that supplier. Moreover, we observe that this preference is even stronger for customer firms with higher environmental scores or higher initial carbon emissions. To further validate our findings, we conduct an alternative specification where we focus solely on the choices of new

\(^8\)The climate finance literature presents several arguments in support of this idea. Firstly, as climate change garners more attention, there is an increased demand for green products, and consumers are willing to pay a premium for them. Additionally, the growing interest in sustainable investments (Hartzmark and Sussman, 2019; Ardia, Bluteau, Boudt, and Inghelbrecht, 2022; Pástor, Stambaugh, and Taylor, 2022) has been observed. Bolton and Kacperczyk (2022) recently discovered that global stock markets incorporate carbon transition risk into their pricing, resulting in higher costs of capital for firms with high carbon transition risk, as measured by total CO2 emissions. Consequently, these firms are inclined to purchase products from suppliers that offer more climate-friendly technology, as it helps reduce their carbon transition risk, ultimately mitigating their cost of capital and debt (Chava, 2014). Lastly, Schiller (2018) found that suppliers with high ESG ratings attract more customers from countries with stringent ESG standards.

\(^9\)Strictly speaking, the establishment of supplier-customer relationships is a two-sided matching process. However, it is often observed that customer firms have significantly greater bargaining power during the selection process. Schiller (2018) discovered that, on average, customer firms are ten times larger in terms of book value of assets and five times larger in terms of market capitalization compared to the average supplier.
suppliers. This analysis strengthens the case that customers actively make choices and that the observed effect is not solely explained by continued supply chain relationships.

Next, we examine the suppliers’ capacity for business expansion. Our regression analysis reveals that suppliers’ climate innovation does attract new business customers. Specifically, an increase in the interquartile range of the climate patent ratio of a supplier is associated with a 7.35% – 22.06% increase in the number of new business customers obtained by the supplier between 2011 and 2021. Importantly, these coefficients are not significantly different from zero between 2005 and 2010. We are unable to attribute the absence of significant effects prior to 2010 to a specific cause, but we discuss several possible explanations, including the establishment of the “Y02/Y04S” tagging scheme that we argue raised public attention to climate patents and the potential for knowledge dissemination after 2010 (EPO, 2015) and the heightened attention to climate change following the failure of the COP15 meeting in Copenhagen 2009\(^\text{10}\) is another possible factor, as documented in Ardia et al. (2022), and other concurrent developments around 2010.\(^\text{11}\) Consistent with the notion of a structural break in 2010, we conduct event studies confirm a positive jump in the value of climate patents measured in following Kogan, Panapikolaou, Seru, and Stoffman (2017) after 2010, with no comparable effect in the value of general patents around this time.

Investigating transmission channels for the capacity to attract new customers, we find that new customer firms with high environmental scores or with high GHG emissions are more likely to switch to suppliers offering products that embed climate innovation. A high environmental rating is considered to be a proxy for a firm’s environmental and climate mitigation preferences, i.e. firms with high environmental ratings should have a higher willingness-to-pay for climate-innovative products.\(^\text{12}\)

Finally, we delve into the types of climate patents that have the most significant impact on the

\(^{10}\)In spite of widely shared expectations, COP15 failed to produce a new global climate agreement that was only concluded six years later in Paris. This may have acted as a shock, increasing awareness and urgency of climate issues.

\(^{11}\)Further support for a structural break around 2010 is provided by Choi, Gao, Jiang, and Zhang (2022), who document that the valuation gap between high-emission and low-emission firms became significantly negative only after 2011. This suggests a shift in the reaction to climate-related information.

\(^{12}\)There is a growing theory literature explaining non-monetary corporate ESG preferences, going back to Bénabou and Tirole (2010) who argue that on one hand, firms’ CSR behavior could be explained by their internal belief in “doing well by doing good” (Baron, 2001), and on the other hand, a firm's ESG preferences could reflect the personal preferences of the firm’s CEO or board members. The revealed preference of high-emission customer firms could be explained, first, by the presence of climate-conscious institutional investors pushing for a reduced carbon footprints (Atta-Darkua, Glossner, Krueger, and Matos, 2022) and, second, the fact that high carbon emissions are associated with higher costs of capital (Bolton and Kacperczyk, 2021b).
acquisition of new customers. Our findings reveal that climate patents with higher market value, as measured in Kogan et al. (2017), and those that exhibit a strong relationship with the supplier’s core products play a more crucial role in attracting new customers. It is worth noting that the innovation literature lacks a measure that effectively links patents to the products of innovators (Argente, Baslandze, Hanley, and Moreira, 2020). To address this gap, we develop a novel text-based measure following the methodology outlined in Kogan, Papanikolaou, Schmidt, and Seegmiller (2021). This measure relies on a deep learning technique in natural language processing, specifically the Stanford GloVe model. By computing the pairwise document similarity between a given patent text and the product description from the company’s 10-K annual report, we can determine the extent to which a patent is critical for the firm’s core products. A higher cosine similarity score indicates a stronger connection between the patent and the company’s core products. In our regression analysis, we observe that climate patents with a high cosine similarity score have a more pronounced impact on the acquisition of new customers.

We revisit the concern that our analysis might be affected by endogeneity problems, in particular the concern that selection effects masked by omitted variables attract new corporate customers and are correlated with climate innovation, such as the possibility that other green or ESG-related firm policies, rather than climate patents. We introduce two instrumental variables to address such omitted variable concerns. Our first identification strategy exploits exogenous shocks in the probability of patent approvals arising from the quasi-random assignment of lenient or tough patent examiners in most USPTO technology art units (Sampat and Williams, 2019; Farre-Mensa, Hegde, and Ljungqvist, 2020; Cockburn, Kortum, and Stern, 2002). We use the patent examiner leniency as an instrumental variable (IV), following the literature that the leniency shock is likely orthogonal to any remaining firm-level omitted variable bias. Our second instrument is technology obsolescence following Ma (2022), based on the rationale that more obsolete knowledge is less likely to be at the frontier of climate technology and that the aging of an innovator’s knowledge base is determined by technology shocks of other innovators, and hence exogenous for the innovator under consideration. Using these two instrumental variables, we corroborate all our main findings in the 2SLS regressions.

Literature: Our paper contributes to three strands of the literature. First, Our paper contributes to the growing literature regarding climate and green innovation and its effects and determinants.

13 Patent applications are assigned to art units of patent examiners by technological specialization. There are about 900 art units, so they are a fairly granular subdivision of the patent examination process.
in finance and economics. Dechezleprêtre, Glachant, Haščič, Johnstone, and Ménière (2011) use PATSTAT data to examine the dynamics, distribution, and international transfer of patented inventions in 13 climate change mitigation technologies between 1978 and 2005. Furthermore, Aghion, Dechezleprêtre, Hémous, Martin, and Van Reenen (2016) construct new firm-level panel data on auto industry innovation distinguishing between “dirty” (internal combustion engine) and “clean” (e.g., electric, hybrid, and hydrogen) patents across 80 countries. They show that firms tend to innovate more in clean (and less in dirty) technologies when they face higher tax-inclusive fuel prices. Acemoglu, Aghion, Barrage, and Hémous (2020) find that the shale gas boom was associated with a decline in innovation in green relative to fossil fuels-based electricity generation technologies. Cohen, Gurun, and Nguyen (2021) document that listed firms in the energy sector contribute a lot to green patents but receive lower ESG ratings and are frequently excluded from investing scopes of ESG funds. Extending the analysis to non-listed firms, Dalla Fontana and Nanda (2022) show that climate patents granted to firms backed by venture capitalists represent a small share of climate patents but that these patents are more likely to cite fundamental science and to be subsequently cited. Bolton et al. (2023) document that climate innovation is path-dependent and has no significant impact on the innovators' future carbon emission reductions. Reza and Wu (2022) show evidence that government-led environmental regulation influences corporate innovation policies. Kuang and Liang (2022) show that while firms with high carbon risk firms and low activity in climate patenting show significant underperformance in risk-adjusted long-run stock returns, there is no underperformance for peers with similar high carbon risk but high levels of climate innovation. Looking at green patents in general (not necessarily related to climate), Reza and Wu (2022) show that environmental regulation and firms’ exposure to regulatory risk positively affect the value of green innovation. There is some controversy, however, as Andriosopoulos, Czarnowski, and Marshall (2022) compare green patents with other patents through event studies and find no evidence that investors value green innovation.

Second, our paper is closely related to recent work on climate finance and the supply chain. Schiller (2018) and Dai, Liang, and Ng (2021b) both show that ESG policies of customer firms can propagate to supplier firms, but not vice versa. Similarly, HomRoy and Rauf (2023) show that supply chain connections influence the adoption of climate-responsible policies. Furthermore, Pankratz and Schiller (2021) find that customer firms are more likely to terminate the existing supplier-customer relationships if the suppliers suffer from severe climate physical risks. Similarly, Bisetti, She, and Žaldokas (2023) show that U.S. firms cut imports and are more likely to terminate a
trade relationship when their international suppliers experience environmental and social incidents. Lastly, Dai, Duan, Liang, and Ng (2021a) provide empirical evidence that firms outsource part of their carbon emissions to foreign suppliers. To the best of our knowledge, we are the first to exploit the real impact of climate-related technologies on the supply chain.

Third, our paper is related to a small literature on corporate innovation in the supply chain. Delgado and Mills (2020) show that firms in supply chain industries tend to be more innovative than firms in business-to-consumer industries. Isaksson, Simeth, and Seifert (2016) show that buyer innovation in supply chain networks leads to an increase in supplier innovation. Chu, Tian, and Wang (2019) find that geographic proximity to customers increases supplier innovation. By contrast, Todo, Matous, and Inoue (2016) find for Japanese data that distant suppliers that embody more diversified knowledge improve productivity more than neighboring suppliers. Looking at industry linkages, Dong, Liu, Tang, and Qiu (2023) find that the innovativeness of upstream industries positively impacts customer innovation for Chinese listed firms. We contribute to this literature the analysis of the acquisition of new customer firms following supplier innovation that to our knowledge has not been investigated so far. There is also a small literature focusing on green innovation in the supply chain. Chen, Wang, and Zhou (2019) show theoretically that supplier and customer firms can increase profits and environmental benefits when they cooperate on their R&D strategies. Looking at industry-level evidence, Costantini, Crespi, Marin, and Paglialunga (2017) find evidence that innovative activities have an impact on the sectoral environmental performance not only in the innovating sector but also in downstream purchasing sectors. We contribute to this literature the analysis of firm-level evidence on the impact of supplier innovation on customer GHG emissions.

The paper is organized as follows. We explain our data strategy and main variables and provide summary statistics in Section 2. In Section 3, we present the first part of our main analysis, dedicated to the link between supplier climate patents and GHG emissions at customer firms. The second main part, knowledge diffusion of climate patents by their capacity to win new customers, is presented in Section 4. In Section 5, we address endogeneity concerns and present two distinct identification strategies that confirm our main results. The final section concludes.
2 Data and Sample Construction

2.1 Sample of Climate Patents

For our baseline patent sample, we start with the US patent database maintained by Leonid Kogan and coauthors of all US patents through 2021 that can be matched to CRSP-Compustat firms. The dataset is an updated version of the patent sample used in Kogan et al. (2017).\(^{14}\) We then extend this sample to the most recently granted patents by extracting raw data from PatentsView.org and repeating Kogan et al. (2017)’s matching algorithm to match newly granted patents after 2021 to CRSP-Compustat firms.\(^ {15}\) We also obtain the Cooperative Patent Classification (CPC) codes from PatentsView.org to identify all patents that are climate-related. We use the “Y02” tag to identify climate patents, the tagging scheme launched in 2010 jointly by the European Patent Office (EPO) and the USPTO under the auspices of the United Nations Framework Convention on Climate Change in order to extend the reach of climate technologies to a broader range of stakeholders (Angelucci et al., 2018; Calel, 2020).\(^ {16}\) Our final patent sample includes 1,892,073 US-granted patents issued to CRSP-Compustat firms and with patent application dates from 2000 to 2020. Among them, 110,896 patents are classified as climate patents. Specifically, we search for the presence of a “Y02” tag (other than “Y02A”) in the CPC codes of a given patent.\(^ {17}\)

Table A1 shows the annual number of climate-related patents sorted by patent application year. We further divide climate patents into climate process and product patents, following the method for general patents developed by Bena et al. (2022). A patent is classified as a process patent if its first claim (usually the most important claim) begins with the words “A process of,” “A method of,” “A method for,” etc. Approximately 31% of climate patents belong to process patents. Table A1 further tabulates the annual number of climate patents by “Y02” categories. Y02E (Energy) and

\(^{14}\)We are grateful to Leonid Kogan and coauthors for making this dataset available.

\(^{15}\)Our extension to patents granted in 2022 and 2023 aims at partially alleviating the well-known patent truncation bias, as described in Lerner and Seru (2021) which is particularly important for climate patents, given their recent nature. When sorting patents by year of filing, we see that many patents filed at the end of our sample (2018 – 2020) have not yet been granted, resulting in a significant drop in the number of patents at the end of the sample.

\(^{16}\)We exclude patents with the Y02A and Y04S tag, patent tags narrowly dedicated to innovation in climate adaptation and smart grids, respectively. There are very few Y02A and Y04S patents and they appear less suitable for our supply chain analysis.

\(^{17}\)While the Y02 tagging scheme was only launched in 2010 - originally limited to climate change mitigation in energy production (Y02E) and capture, storage or disposal of greenhouse gases (Y02C), but later on expanded to transportation (Y02T), buildings (Y02B), production of goods (Y02P), and IT related patents (Y02D) - the tag have been awarded ex post to older patents, and can be meaningfully exploited after 2000.
Y02T (Transportation) are the two largest categories, accounting for nearly 60% of total climate innovation, and product innovation clearly dominates in these categories.

For our extensions and for the instrumental variables (IV) approach used in Section 5, we also use patent application data and information about USPTO examiners obtained from the USPTO Patent Examination Research dataset.\(^\text{18}\) The forward and backward citation data from PatentsView.org.

2.2 Supply Chain Data

The supply chain literature overwhelmingly uses two data sources to identify supply chain networks. First, companies must report all major customers (defined as purchasing more than 10% of their total sales) in their 10-K filing, and these data are compiled in the Compustat Customer Segment data. Second, the FactSet Revere Supply Chain dataset records a much larger set of supply chain relationships (about ten times larger) that FactSet compiles from a diverse range of sources, including conference call transcripts, capital market presentations, company press releases, company websites, etc., in addition to companies’ 10-K filings (Zhao, Webster, and Luo, 2015). Following Schiller (2018) and Dai et al. (2021b), we merge both databases as our baseline sample. Each supply-chain data point contains information such as the names and company identifiers of the supplier and customer, the start and end date of the relationship, and sales. We require suppliers and customers to be in the CRSP-Compustat sample. Furthermore, following Barrot and Sauvagnat (2016), we consider that firm \(A\) is a supplier to firm \(C\) in all years ranging from the first to the last year in which \(A\) reports \(C\) as one of its customers.

Table 1 reports the summary statistics at the supply-chain level. Panel A shows that we can identify 73,477 unique supply-chain relationships from 2003 to 2021.\(^\text{19}\) When we require that a given customer has non-missing ESG ratings in any of the three ESG databases (Refinitiv, Sustainalytics, and S&P Global), this number drops to 48,563. Furthermore, 43% of the relationships last fewer than three years. Panel B reports data for the subsample that contains sales information for the supplier-to-customer sales. This is a much smaller subsample, consisting of only approximately 12% of the supplier-customer relationships in the full sample, and it largely coincides with the data obtained from 10-K filings where sales reporting is mandatory. This subsample is used in our

\(^{18}\)For details about this dataset, see Graham, Marco, and Miller (2018).

\(^{19}\)The FactSet Revere begins its supply-chain data in 2003.

Electronic copy available at: https://ssrn.com/abstract=4557447
baseline regression since it allows for the most accurate observation of the variable of interest.

Panel C of Table 1 tabulates bivariate distributions for suppliers’ and customers’ industries, with industries measured by NAICS at the 2-digit level and all frequencies greater than 2% highlighted. In Panel C, the most frequent supply-chain relationships are between suppliers in the manufacturing industry (33) and customers in the manufacturing industry (33), accounting for 12.47%. The second largest group is the information-to-information supplier-customer relationship.

2.3 ESG and CO2 Emission Data

To investigate which subset of business customers are attracted by suppliers’ climate innovation, we obtain environmental ratings for customer firms from three ESG-rating data providers: (i) Refinitiv ESG (formerly Asset4), (ii) Sustainalytics, and (iii) S&P Global ESG rating. Following Brandon, Glossner, Krueger, Matos, and Steffen (2020), we create a composite environmental score based on the three distinct environmental evaluations in order to maximize the sample coverage.

\[
Score_{i,t} = \frac{1_{A4, it} \times z_t(Score_{A4, it}) + 1_{S&P, it} \times z_t(Score_{S&P, it}) + 1_{Sus, it} \times z_t(Score_{Sus, it})}{1_{A4, it} + 1_{S&P, it} + 1_{Sus, it}}
\]

(1)

Specifically, we first transform those raw environmental scores into three standard z-scores with a mean equal to zero and a standard deviation equal to 1. Next, we take the equal-weighted average for \(k \) z-scores conditional on the fact that there are \(k \) non-missing environmental scores for that firm. \(1_{A4, it} \) is an indicator variable equal to 1 if firm \(i \) is covered in Refinitiv in year \(t \).

Furthermore, we obtain firm-level CO2 emission data from S&P Trucost. Trucost provides CO2 emissions data for global-listed companies based on the Greenhouse Gas Protocol that sets the standards for measuring corporate emissions. Scope 1 emissions are direct emissions from operations that are owned or controlled by the reporting company. Scope 2 emissions are indirect ones from the generation of purchased or acquired electricity, steam, heating, or cooling consumed by the reporting company. Finally, Scope 3 emissions contain all indirect emissions (not included in Scope 2) that occur in the value chain of the reporting company, including both upstream and downstream emissions. Given the fact that Scope 3 emission data are heavily biased according to the recent finding by Klaassen and Stoll (2021), we only use the Scope 1 and Scope 2 in our analyses.\(^{20}\)

\(^{20}\)Klaassen and Stoll (2021) find that, in the tech sector, corporate reports omit half of the total Scope 3 emission data.
2.4 Summary Statistics

In our analysis of customer emissions in Section 3, we focus on a customer firm × year sample, which requires that each customer firm has at least one CRSP-Compustat supplier offering products or services to it in the given year. When there are multiple suppliers, we use the supplier-to-customer sales as weights to compute a weighted average measure of all suppliers (e.g., suppliers’ climate patent ratio). We also require that the customer company reports CO2 emission data in S&P Trucost and that at least one supplier continues to sell products to the given customer for the next three years.21

As shown in Table 2, Panel A, our sample of customers is relatively small (2,831 observations) as we impose quite restrictive sample filters: sales between suppliers and customers must be reported, i.e. supply chain relationships without sales are dropped. This filter is important to obtain the most accurate estimate of our main variable of interest, the sales-weighted average climate innovation of all suppliers of a customer firm, considering that on average, each customer company has 4.7 suppliers in a given year.22 We set the climate patent ratio equal to zero if a supplier has no patent in a given year and find that the average supplier climate patent ratio is 1.6%, suggesting that most suppliers make little effort in climate innovation. In the subsample in which we require that suppliers file at least one general patent application, the mean of the climate patent ratio increases to 6%. This number is lower (but still in the same order of magnitude) than the mean green patent ratio (11%) reported in Bolton et al. (2023), related to the fact that Bolton et al. (2023) focuses on European patents where the ratio of climate patents to general patents is larger than for USPTO patents that we examine. The average number of general patents for suppliers is 11.20, while the average number of climate patents is 0.64.23 Finally, the annual average (median) Scope 1 CO2 emissions of a typical customer are 446,858 tons (387,327 tons) (the table records logs).

In Section 4 (when we examine whether climate innovation helps suppliers obtain new business customers), we focus on a sample of potential suppliers in our regression analyses. Specifically, we require that each firm has at least one new customer firm in the sample between 2005 and 2021. New customers are firms that have never bought the supplier’s products or services before and

21This filter helps us investigate the long-term and stable supplier-customer relationships.
22We drop this sample filter in a complementary analysis also in Section 3.
23This figure differs from the summary statistics shown in Table 2, Panel A because the variable in the table (number of general patents) takes the natural logarithm.
start the supplier-customer relationship in the given year. Supplier firms in the financial, retail, and wholesale industries are excluded from the sample. Table 2 Panel B reports summary statistics for this sample of potential suppliers. On average, each firm has 0.4 new customers and 2.52 existing customers in a fiscal year.

3 Climate Innovation and Customer Carbon Emissions

3.1 Main Results

In this section, our aim is to explore whether climate innovation by suppliers has an impact on reducing greenhouse gas (GHG) emissions of customer firms along the supply chain. This analysis complements the work of Bolton et al. (2023), who primarily focus on the potential CO2 emission reductions achieved by the innovating firms themselves. We argue that the primary beneficiaries of climate innovation are often the customers who utilize the products incorporating the climate technology. This assertion aligns with our finding from Table A1, where we observe that over 70% of US climate innovation takes the form of product innovation. This implies that the majority of new climate technologies are integrated into final products sold to customers, leading us to expect that these innovations will contribute to reducing GHG emissions of the customers rather than the innovating firms themselves. It is important to note that for direct emissions savings (such as in energy-intensive industries like cement or metal production), the innovating firm would need to improve its own production processes to achieve Scope 1 or Scope 2 emissions reductions. However, it is essential to recognize that our analysis of customer emissions is limited as we exclusively focus on business customers. We do not have a reliable methodology to track GHG emissions of retail customers or the business customers of the innovator’s direct customers. Consequently, the total CO2 emissions savings may be even larger than what our study captures.

We construct a customer-firm × year sample following the procedures in Section 2.4. In particular, we require that each of the customer firms has at least one supplier in a given year. We run the following regressions on this sample,

\[\Delta_{t+1} \ln(\text{Emissions}_i) = \beta \text{Supplier’s Climate Patent Ratio}_{i,t} + \gamma \textbf{X}_{i,t} + \delta_{\text{NAIC-4},t} + \epsilon_{i,t} \]

(2)
where the dependent variable $\Delta_{i,t+k} = \ln(\text{Emissions}_{i,t+k}) - \ln(\text{Emissions}_{i,t})$ measures the forward-looking change in GHG emissions for customer firm i from year t to $t+k$. We use four measures for customer emissions. First, we distinguish between Scope 1 (direct) and Scope 2 (energy-related but indirect) emissions. Secondly, we calculate total emissions in tonnes and emissions intensity (total emissions divided by the firm’s annual output) according to Bolton and Kacperczyk (2021a, 2022).\footnote{We use the 2000 US CPI to adjust the output of each customer firm. We calculate the output following Kogan et al. (2017).}

We follow Bolton et al. (2023) and use the climate patent ratio to measure suppliers’ climate innovation efforts, as the ratio captures the relative effort of climate innovation in the firm’s total R&D output.\footnote{Climate patent ratio is set to zero if the supplier has no patents filed in year t.} We replicate Bolton et al. (2023)’s definition of our main independent variable, supplier’s climate patent ratio, defined as the number of new climate patents divided by the number of new general patents, both counted in year t when the patent application was filed. If there are multiple suppliers for this customer, we use the sales between each supplier and the given customer as weights and calculate the weighted average of the climate patent ratio. $X_{i,t}$ includes firm size, Tobin’s q, cash, book leverage, ROA, capital expenditure, sales growth and PPE (this follows Bolton et al. (2023)). Besides, we also control the number of suppliers as well as the CO2 emissions in year t. To capture industry-level decarbonisation trends, we add industry by year fixed effects. Standard errors are clustered at the customer firm level.

Table 3 shows our estimation results. Panel A focuses on Scope 1 emissions. We standardize the supplier’s climate patent ratio with a standard deviation of 1 and multiply the coefficients by 100. As shown in Panel A, an increase in the supplier’s climate patent ratio by one standard deviation leads to a decrease of about 10.7% in total emissions (Scope 1) and 12.5% in emission intensity (Scope 1) over the next five years. These two numbers correspond to a reduction of 47,813 tonnes ($446,858 \times 10.7\%$) of CO2 and 6.19 ($49.55 \times 12.5\%$) tonnes per million dollars output respectively. In contrast, we do not find any CO2 reduction effect when the number of general patents granted to the suppliers increases, showing that the effect is specific to climate-related technologies. In Panel B, we document a similar pattern for Scope 2 emissions. A one standard deviation increase in the supplier’s climate patent ratio is associated with a 5.54% decrease in total emissions (Scope 2) and a 6.08% decrease in emission intensity (Scope 2).

We find similar conclusions when using the number of climate patents instead of the climate
patent ratio, as we show in Table A3 in the Online Appendix. One particular concern is that suppliers with a high climate patent ratio might be small innovators. For instance, if a firm has only one patent and that patent is climate-related, the climate patent ratio would be 1. However, this concern does not arise in our data. When we restrict our sample to firms with a climate patent ratio greater than 0.10, we observe that these firms filed an average of 19.12 climate patents. Additionally, the pairwise correlation between the climate patent ratio and the number of general patents is 0.02, which is close to zero.

We also split the sample according to the NAICS 2-digit industries of the customer companies. Table A4 in the Online Appendix shows that the impact of climate technology on Scope 1 emission reductions is only present in coal mining (NAICS: 20 and 21), manufacturing (31, 32 and 33) and transportation (48 and 49). In contrast, there are no significant effects in the service industries, consistent with the fact that coal mining, manufacturing and transportation are the sectors with the highest direct CO2 emissions.

We also examine the impact of climate innovation by climate technology category, using the Y02 subcategories. We find that climate patents in renewable energy and energy efficiency (Y02E), in building technology (Y02B) and in transportation (Y02T) have the strongest impact, and an impact that is monotonically growing over a five-year horizon. This result is consistent with the analysis of the IEA (2021) that these categories of climate innovation are most needed and expected to be most effective in accelerated decarbonization scenarios, and is also in line with our earlier results that emission reductions are stronger for emission-intensive firms. It is also reassuring since these three categories correspond to high-emission activities and exhibit a lot of climate patenting activity. By contrast, we find a weaker and less stable impact in the very active category of ICT-related technologies ((information and communication technology, Y02D), and a still weaker impact for carbon capture and storage (CCS, Y02C) where the patent sample is a very small and concentrated. Somewhat surprisingly, we find no effect on customer emission reductions for production process in goods production (Y02P).

3.2 Extensions

In the previous section, we weight suppliers by their relative importance to the given customer firm, i.e. using the supplier’s sales to the customer divided by the aggregated sales of all its sup-
pliers. However, implementing this procedure loses 90% of the observations due to missing sales information in the supply chain relationships. Therefore, in our first empirical model extension, we follow Kale and Shahrur (2007)’s similar method and use the supplier’s firm-level sales (from Compustat) instead of supplier-to-customer sales as the alternative weights. We report our empirical estimates in Table 4. Panel A shows that the coefficients remain negative and significant, but the impact is much weaker than in Table 3 Panel A, especially in the fourth and fifth years. This suggests that these supply chain relationships with sales information may be more important for both the supplier and the customer. In the supply chain literature, these are dependent suppliers as they rely on a customer for a large portion of their revenues (Intintoli, Serfling, and Shaikh, 2017).

In Panel B of Table 4, we further add the interaction between the supplier’s climate patent ratio and the initial level of the customer’s GHG emissions measured in year t. The interaction term is significantly negative (when we measure initial emissions in terms of intensity), indicating that customers with initially high emissions are more likely to benefit from their suppliers’ climate innovations. Overall, climate technology is not a silver bullet, but an important tool for reducing GHG emissions along the supply chain and for those high-emission customer firms.

In Panel C of Table 4, we distinguish between climate process patents and climate product patents. Traditional process patents concern a new method of producing an existing good, while product patents concern the invention or improvement of a new product (Bena and Simintzi, 2022). We suggest that climate process patents could lead to a reduction of CO2 emissions in the innovator’s production process, while climate product patents embed decarbonisation technologies in final products, and customers benefit from them when using these products. Intuitively, we should expect climate product patents to be more critical in reducing customers’ CO2 emissions. The coefficients in Panel C confirm our hypothesis.

Overall, we show that there is a strong and robust correlation between suppliers’ efforts on climate innovation and customer firm’s GHG emission reductions.

There are obviously endogeneity issues, and specifically concerns about selection effects between customers and suppliers are still not yet eliminated. It is plausible that customer firms with more ambitious decarbonization goals are also more likely to select green suppliers with a climate innovation agenda, even if the supplier’s climate innovation success makes no direct causal contribution to the customer’s CO2 reduction, so that we observe a misleading association due to simultaneity
bias.

To address this concern, we follow the approach outlined by Schiller (2018) and conduct regressions on a supplier × customer × year sample. Each observation in this sample represents a supplier selling products or services to a customer in a specific year (t). We include supply chain relationships with missing sales in our analysis.

The regression results, presented in Panel D of Table 4, use the customer’s forward-looking Scope 1 CO2 emissions as the dependent variable and the supplier’s climate patent ratio as the primary explanatory variable within a given supplier-customer pair. Importantly, we include supplier-customer pair fixed effects to account for the specific dynamics of each relationship and focus solely on within-pair variation. By doing so, we aim to address concerns about selection effects. The regression results demonstrate that, for a stable supplier-customer pair, the customer’s CO2 emissions respond to the supplier’s newly granted climate patents. The coefficients in Panel D are significantly negative, indicating a negative relationship. However, the magnitudes of the coefficients are smaller than those in Table 3, as we treat each supplier-customer relationship equally, disregarding the varying importance of different suppliers to specific customers. We obtain similar results for Scope 2 emissions in Panel E.

In addition, it is worth noting that there may still be residual endogeneity issues, which we address using an instrumental variable approach in Section 5.

Finally, in theory, customer emissions should also be measured by the downstream Scope 3 emissions reported by the supplier firm. Scope 3 emissions contain all indirect emissions (not included in Scope 2) that occur in the value chain of the reporting company, including both upstream and downstream emissions. Thus, we extend the analysis and look at innovators’ downstream Scope 3 emissions in Table A6. We find no significant effect of climate patents related to product innovations. This finding confirms the result of Bolton et al. (2023) who also look at downstream Scope 3 emissions of innovators in their sample and find no effect. One possible reason is that Scope 3 emission data are heavily biased according to Klaassen and Stoll (2021).
4 Knowledge Diffusion and New Business Customers

In this section, we turn to our second main inquiry, the relationship between climate innovation and knowledge diffusion via the acquisition of new customers. This is a natural (but understudied) follow-up question to an investigation of how innovation percolates through supply chain networks. It is arguably particularly relevant for climate innovation given the urgency to reduce GHG emissions and the global public goods character of widespread adoption of successful Y02 patents. We ask whether climate innovation helps suppliers to attract new customers and we also ask which types of new customers are most likely to emerge.

It is not a foregone conclusion that climate innovation will facilitate business expansion, or “business stealing” and the acquisition of new customers. Fowlie (2010) documents that reducing GHG emissions is costly and therefore not clearly a profit-boosting decision. In response, suppliers are likely to charge a premium for their climate innovation and they may also try to increase their margin to benefit from their innovation. As a result, demand may be stifled by price increases, and the net effect (given the customer interest in the new CCMT) is not obvious. The literature provides a number of possible explanations why the net effect may result in business expansion. Growing attention to carbon footprints and corporate climate action creates incentives to reduce emissions even if it is costly. Coupled with the growing demand for socially and environmentally responsible or ESG investments, (Hartzmark and Sussman, 2019; Pástor et al., 2022; Ardia et al., 2022), companies should increasingly be willing to demand and pay a premium for products that incorporate new climate technology. Bolton and Kacperczyk (2022) recently find that global stock markets do price carbon transition risk, and firms with high carbon transition risk (as measured by total CO2 emissions) have a higher cost of capital (Bolton and Kacperczyk, 2021b). Schiller (2018) finds that suppliers with high ESG ratings attract more customers from countries with high ESG standards.

In this section, we tackle these questions from two different angles. We first look at the reaction from the customer’s perspective of supplier choice among a well-defined set of potential suppliers. We then consider suppliers and analyze their capacity for business expansion by increasing the number of customers in the wake of climate innovation.
4.1 Customer’s Choice of New Suppliers: A Discrete Choice Model

We develop a discrete choice model (McFadden, 1974) that portrays each customer’s selections of suppliers among a set of potential suppliers. We then investigate the role of climate innovation in this selection.\footnote{Strictly speaking, the establishment of supplier-customer relationships involves a two-sided matching process. However, during the selection process, customer firms tend to have significantly greater bargaining power. According to Schiller (2018), the average customer firm is ten times larger than the average supplier in terms of the book value of assets and five times larger in terms of market capitalization.} We use this model to answer the question of whether a typical customer prefers suppliers with more climate innovation.

For each customer firm that has at least one supplier in a given year, we create a set of alternatives, which includes two types of suppliers. The first type consists of the suppliers that are selected by the customer firm. The second type includes suppliers that offer similar products to the chosen suppliers but are not selected by the customer firm. We use Hoberg and Phillips (2016)’s text-based product description measures to obtain the second set of suppliers (not selected). The final regression sample is at the level of customer × potential supplier × year. The model uses the baseline regression,

\[
I(\text{Select})_{c,s,t} = \beta_1 X_{s,t-1} + \beta_2 X_{c,t} + \beta_3 X_{s,t-1} \times X_{c,t} + \chi_c + \varepsilon_{c,s,t}
\]

where the dependent variable \(I(\text{Select})_{c,s,t}\) is a dummy that equals one if the customer firm \(c\) selects the supplier \(s\) to establish the supply chain relationship in year \(t\). In the discrete choice model, we can control for the firm characteristics of both suppliers and customers, as well as their interactions. Our model differs from a standard textbook discrete choice model in two important ways. First, a standard textbook-based discrete choice model requires exclusivity among alternatives, i.e., only one alternative can be chosen at a time. In contrast, a typical customer can choose simultaneously multiple suppliers in the same fiscal year. Second, we estimate the model using OLS instead of conditional logit because we introduce complicated two-way and three-way interactions. The interaction term is much harder to explain in a logit model (Ai and Norton, 2003).

Table 5 reports the estimation results. In column (1), the coefficient of the supplier’s climate patent ratio is positive and highly significant, implying that customers in general prefer suppliers with climate innovations. Specifically, an increase in the interquartile range of the climate patent ratio is associated with a 12% increase in the probability of selecting that supplier. The effect is also
strongly positive for general patents. This is a necessary control variable in our context to make sure that climate patents are not simply picking up a reaction to general supplier innovation. The strongly significant and positive coefficient also underlines the validity of our empirical approach which is novel in the innovation and in the supply chain literature. As an aside (since beyond the topic of this paper), to the best of our knowledge we are the first to document such a business expansion effect (acquisition of new customers) following supplier patents in general (a similar analysis of dynamic supply chains reaction to innovation is absent in the literature).

Column (2) of Table 5 breaks the sample period into two sub-periods, before and after 2010. It reveals that the effect, while seemingly significant for the full sample, is really explained only by climate patents with application date starting in 2010. Only the coefficient on the supplier's climate patent ratio × I(Post 2010) is positive and significant, again showing that customer firms start to express a positive preference for climate innovation only after 2010. In contrast, there is no significant difference between the coefficients of supplier's number of general patents × I(Post 2010) and supplier's number of general patents × I(Before 2010). This shows that the structural break around 2010 only matters for climate patents. We discuss this structural break in the next section, after introducing our second empirical approach that provides more evidence on the regime change around 2010.

We then explore the heterogeneous impact of climate innovations on different types of new customers. An important advantage of the discrete choice model is that we can control for the firm characteristics of both suppliers and customers, as well as their interactions. Table 5 column (3) shows that the interaction term between the supplier's climate patent ratio and the customer's environmental score is positive and significant, indicating that customer firms with a high environmental score have a stronger preference for the supplier's climate technology. In contrast, the interaction term between the supplier's number of general patents and the customer's E-score is insignificant. Column (4) conducts placebo tests by adding the interaction terms between the climate patent ratio and the social score (and governance score). It shows that the stronger preference is not true for customers with high governance or social scores. Moving to column (5), we can conclude that the stronger preference for the supplier's climate technology by customers with a high E-score exists only after 2010, as shown by the triple interaction term (interacting with I(Post 2010) and I(Before 2010)).

Similarly, in columns (7) and (8) of Table 5, customers with high emissions (either measured by
total emissions or by emission intensity) are more likely to choose climate-innovative suppliers.\footnote{We also add the interaction between customer’s firm size and supplier’s climate patent ratio since the firm size is highly correlated with the total CO2 emissions.} Again, this supplier-customer combination is more frequent after 2010, but not before 2010.

4.2 Innovators’ Capacity to Acquire New Business Customers

In our second pass on the questions regarding knowledge diffusion and new customers, we approach the issue from the supplier’s perspective and its capacity to attract new customers. We construct our sample of potential suppliers following Section 2.4 and then run the following regression,

\[
\text{Num_New_Customer_Firms}_{i,t} = \sum_{\text{Year}=2005}^{2021} \beta_{1,\text{Year}} \left(\text{Clim_Patent_Ratio}_{i,t-1} \times \text{I\}(\text{Year})_t \right) + \\
\beta_2 \text{Num_General_Patent}_{i,t-1} + \beta_3 X_{i,t-1} + \chi_{\text{NAIC-4,t}} + \varepsilon_{i,t}
\]

(4)

The dependent variable (Num_New_Customer_Firms) counts how many new business customers purchase products or services from firm \(i \) in year \(t \).\footnote{A new customer is defined as a customer that has never bought products from firm \(i \) before and start buying in year \(t \).} We lag the climate patent ratio by one year and interact it with \(\left\{ \text{I\}(\text{Year})_t \right\}_{\text{Year}=2005}^{2021} \), a set of dummies equal to 1 in year \(t \). The interaction helps us study the possibly time-varying effect of climate innovation on attracting new customers. Moreover, we also control the number of general patents measured in year \(t-1 \).\footnote{\(X_{i,t} \) includes firm size, Tobin’s Q, cash, book leverage, ROA, capital expenditure, sales growth and PPE (this follows Bolton et al. (2023)). Standard errors are clustered at the firm level.} We plot the coefficients of \(\beta_{1,\text{Year}} \) as well as their confidence intervals at the 90\% level in Figure 1.

Figure 1 shows that the coefficients of \(\beta_{1,\text{Year}} \) are positive and significant only after 2010, with magnitudes ranging from 0.1 to 0.3. An increase in the interquartile range of the climate patent ratio is associated with a 7.35\% – 22.06\% increase in the number of new business customers. In contrast, the coefficients before 2010 are insignificantly different from zero.

Although we find a strong structural break in 2010 in our regression analyses, we cannot pinpoint the causes because there are several concomitant developments around 2010. First, it is possibly related to the introduction of the “Y02/Y04S” scheme by the European Patent Office (EPO) and the USPTO which allowed to easily identify whether a given patent is climate-related. Previously,
patent information related to CCMT was scattered throughout many IPC and CPC categories and did not fall under a single classification section, making it difficult for non-technology specialists to identify them (Angelucci et al., 2018). The introduction of the “Y02” scheme helped stakeholders including customer firms to quickly screen for climate-relevant patents. Second, there were other simultaneous initiatives to enhance climate patent impact. For example, on December 8, 2009, the USPTO implemented the Green Technology Pilot Program, which allows patent applications related to environmental quality, energy conservation, development of renewable energy resources, and reduction of greenhouse gas emissions to be advanced out of order for examination and to get accelerated review. Third, the failure of the December 2009 Climate Change Conference (COP15) to produce a new, long-awaited global climate agreement had the effect of a shock that significantly raised public attention to climate change (Ardia et al., 2022). Lastly, there are papers on market reactions to climate news that find a similar structural break during 2010 and 2011. For example, Choi et al. (2022) show that the price valuation gap between high-emission firms and low-emission firms was close to zero before 2011 but significantly negative afterwards.

To further examine the “Y02” tag effect, we plot the annual median market value of climate and non-climate patents separately in Figure 2.\(^\text{30}\) We follow Kogan et al. (2017)’s method for estimating the market value of a given patent, where they estimate the economic value of patent \(j\) as the product of the estimate of the stock return due to the value of the patent times the market capitalization of the firm that is issued patent \(j\) on the day prior to the announcement of the patent issuance.\(^\text{31}\) For climate patents, we only include Y02E (renewable energy and energy efficiency) and Y02C (carbon capture and storage) because the original Y02 tag only includes these two categories in 2010 (Veefkind, Hurtado-Albir, Angelucci, Karachalios, and Thumm, 2012; Calel, 2020). The figure shows a large jump between 2010 and 2011 in the value of climate patents, and a similar magnitude of jump does not exist for non-climate patents. This implies that Y02 is not only attracting the attention of customers but also that of investors. Interestingly, we don’t find a similar 2010 jump for other Y02 categories.

Next, we explore the role of customer heterogeneity from the innovator’s perspective, asking what types of customer firms it can more likely attract after climate patent grant. Table 6 answers

\(^{30}\) We plot the median instead of the mean to avoid the effects of outliers.

\(^{31}\) Data on the market value of patents are downloaded from Kogan et al. (2017).
this question by estimating the following regression,

\[
\text{Num_New_Customer_Firms}_{i,t} = \beta_1 \text{Clim_Patent_Ratio}_{i,t-1} \times I(\text{Post \ 2010})_{i,t} + \\
\beta_2 \text{Clim_Patent_Ratio}_{i,t-1} \times I(\text{Before \ 2010})_{i,t} + \beta_3 \text{Num_General_Patent}_{i,t-1} + \beta_4 X_{i,t-1} + \chi_{\text{NAIC-4},t} + \epsilon_{i,t}
\]

(5)

In columns (1) and (4) of Panel A, the dependent variable remains the same as in Figure 1 and is defined as the number of new customers attracted by firm \(i \). In addition, we perform a median split of all given new customers in a given year using their environmental scores (see Section 2.3). In columns (2) and (4) ((3) and (6)), the dependent variable counts only those newly acquired customers with environmental scores above (below) the median. Table 2 Panel B shows that the summary statistics are very similar between the number of new customers with high and low environmental scores. Moreover, we add the interaction terms between the climate patent ratio (measured in year \(t-1 \)) and two dummies for the periods before and after 2010, in response to the finding of a structural break in Figure 1. Finally, columns (1) – (3) add industry \(\times \) year F.E., while we control for firm F.E. in columns (4) – (6).

Columns (1) and (4) of Panel A confirm the previous findings in Figure 1 that climate innovation helps to attract new business customers only after 2010, but not before 2010. Moreover, only the coefficients on the regression of the number of new customer firms with a high e-score are positive and significant, suggesting that climate technology attracts those new customers with high environmental scores. A high environmental score could be a proxy for firms’ preference for environmental and climate change concerns, i.e. indicate firms that are more willing to buy and pay for climate innovation products,\(^\text{32}\) a corporate preference that, as first explained in Bénabou and Tirole (2010) and explored in a growing literature on ESG (or CSR) preferences, could be related to various motives, such as an intrinsic belief of decision-makers in “doing well by doing good” (Baron, 2001) or express preferences of company stakeholders.

In Panel B, we conduct a similar sample split for all customer firms in a given year but use a measure of environmental supply chain management from Refinitiv ESG, a variable that Refinitiv constructs as a measure whether a customer firm considers environmental impacts when selecting

its suppliers. As shown in the coefficients of Panel B, supplier’s climate innovation significantly attracts new customer firms that are committed to environmental supply chain management, but again, only after 2010.

In Panel C, we perform another sample split by annual CO2 emissions of customers. We use the sum of Scope 1 and of Scope 2 emissions (in tons). We do not make any within-industry adjustments for CO2 emissions, following Bolton and Kacperczyk (2022)’s view that raw and total carbon emissions better capture a firm’s carbon transition risk. Similarly, Choi et al. (2022) use industry-level emissions measures in their analyses. Interestingly, in Table 6 Panel C, we find that new customers attracted by a supplier’s climate technology are those with high CO2 emissions. In contrast, firms with relatively low emissions are less likely to purchase products from climate innovation suppliers, as shown by the negative coefficients of the climate patent ratio × Post 2010 in columns (3) and (6).

How do we explain this result in Panel C? High-emission firms are not necessarily those with low environmental scores. Table 2 Panel D shows a very low pairwise correlation between the components environmental score and CO2 emissions. Customers with high carbon footprints may prefer climate-innovative suppliers because their products may produce the biggest emissions impact at high-emission firms. In fact, we have documented evidence consistent with this view in Section 3.

It may appear curious that high-emission firms reveal in their supplier choice a strong willingness to pay for technology that reduces their GHG emissions, given that their past trajectory of high emissions may betray insouciance about their carbon footprints. The evidence is, however, consistent with the finding of Cohen et al. (2021) that high-emission firms are also large climate innovators themselves. Also, climate-conscious institutional investors may reserve their strongest pressure in favor of decarbonization towards high emission firms (Atta-Darkua et al., 2022). In addition, higher carbon emissions lead to higher costs of capital (Bolton and Kacperczyk, 2021b), providing an extra financial incentive to clean up for big carbon emitters.

33 We drop customers where the measure of ESG supply chain management is missing.
34 We find a slightly positive correlation, consistent with similar findings in Boffo, Marshall, and Patalano (2020). There are two possible explanations for the low correlation. First, while ESG ratings are calculated within each industry, CO2 emissions are measured as the absolute level. Second, environmental scores in ESG ratings typically include much more information than GHG emissions, such as water scarcity, waste management, and biodiversity issues.
4.3 Existing Customers and Operating Performance

We now turn to the choices of the supplier’s (and climate innovator’s) existing customers. Will they remain loyal or, possibly as a result of higher costs, switch to another supplier? Table 7 Panel A regresses the number of existing customers who stop buying products from the given supplier. It shows that existing customers do not tend to desert climate innovators, as all coefficients in the three columns are far from significant.

In summary, suppliers’ climate innovations help suppliers attract new customers, but do not drive away old customers, which could ultimately lead to sales growth and profit improvements because climate-innovative products may command a higher premium. As a result, Table 7 Panel B examines how climate innovation affects suppliers’ operating performance. In column (1) of Table 7 Panel B, the dependent variable is the natural logarithm of sales. Consistent with our intuition, the coefficient of the climate patent ratio \((t-1) \times \) after 2010 is positive and significant. Climate innovation is associated with sales growth only after 2010. In columns (2) and (3), we examine ROA and profits separately, where the variable (profits) is defined as \((\text{total sales} - \text{cost of goods sold})/\text{total sales}\). Interestingly, the coefficients of the climate patent ratio \((t-1) \times \) before 2010 are both negative and significant, while the climate patent ratio \((t-1) \times \) after 2010 is positive (but not significant). Our results are consistent with recent findings by Bolton et al. (2023) that the climate patent ratio predicts declining market shares and profits. Our explanation is that this only happens before 2010, when climate technology is not widely recognized. After the introduction of the “Y02” tag by the EPO and the United Nations, firms with more climate innovations do not suffer from lower ROA and profits.

4.4 What Types of Climate Patents Attract Customers?

In this section, we begin to explore the heterogeneous impact by differentiating between various types of climate patents. More specifically, we ask which subsets (types) of climate innovation has the strongest pull effect in attracting on new customers. Inspired by the canonical innovation literature (see Cohen (2010)), we differentiate climate innovations by their quality. Although the literature uses patent citations to measure patent quality (Jaffe and Trajtenberg, 2002), the citation measure has a substantial limitation when we implement it in our study. Since our climate patent sample spans from 2000 to 2021, many recent-approved patents have not yet received citations by
the end of our sample periods (Lerner and Seru, 2021).

As a result, we measure the importance of a given patent using Kogan et al. (2017)’s measure of the market value of patents. Kogan et al. (2017) estimate the economic value of patent \(j \) as the product of the estimate of the stock return due to the issuance of the patent times the market capitalization of the firm that is issued patent \(j \) on the day prior to the announcement of the patent issuance.\(^{35}\) In Table 8 Panel A, we construct two new measures, Climate Patent Ratio (High Value) and Climate Patent Ratio (Low Value). The Climate Patent Ratio (High Value) is equal to the number of new climate patents (invented by firm \(i \) in year \(t \)) of which the market value is higher than the annual median market value of all climate patents divided by the total number of general new patents invented by firm \(i \) in year \(t \). The dependent variable in Table 8 is still the number of new customers acquired by a given supplier. We distinguish these new customers along two dimensions: E-score and the emission level. The coefficients of Table 8 Panel A show that high-value climate patents dominate the attraction effect of climate innovation.

Another dimension is the extent to which a given climate patent is essential in producing the final products that the supplier (the innovator) sells to customers. Cohen, Gurun, and Kominers (2019) argue that many patents can be of great strategic value but of no production value to the patent holders. Unfortunately, the literature on innovation is rather silent on linking each patent to the patentee’s products. Therefore, we contribute by constructing a new measure.

We use a new deep-learning method in natural language processing to compute the pairwise document similarity between a given patent text and the patent holder’s product description. A higher cosine similarity naturally means the given patent is more critical for the firm’s core products. To obtain patent content, we follow Kogan et al. (2021) by using the title, abstract, and detailed description text of the patent. We obtain product descriptions from 10-K filings (Item 1. Business Description) following Hoberg and Phillips (2016). We then use the Stanford GloVe model (Global Vectors for Word Representation) to compute pairwise text similarity between climate patent text and product description text.\(^{36}\) Figure 3 shows an example of our pairwise document similarity. The climate patent is entitled “Enhanced Queue Management For Power Control Of Data Storage Device”. The patent is classified as a climate patent because it has a Y02D tag. The patent is granted to Western Digital Corporation, and we then download 10-K Item 1 for the company in

\(^{35}\)Data on the market value of patents are downloaded from Kogan et al. (2017).

\(^{36}\)We include only nouns and use the TFIDF adjustments in our calculations. All details on the procedure to implement the Stanford GloVe model can be found in Kogan et al. (2021).
the same year as the patent application. The Stanford GloVe model results in a 0.93 correlation for this example.

Table 8, Panel B, reports our results. The dependent variable is still the number of new customers acquired by a given supplier. We distinguish new customers along two dimensions: E-score and GHG emissions (Scope 1). We sort all climate patents into two groups by the median of product-patent cosine similarity. The Climate Patent Ratio (High-Related) is equal to the number of new climate patents (invented by firm i in year t) whose product-patent cosine similarity is higher than the annual median cosine similarity for all climate patents divided by the total number of general new patents invented by firm i in year t. Panel B shows that only climate patents that are highly correlated with the supplier’s products attract new customers.

5 Endogeneity: Instrumental Variables Strategies

So far, our analysis documents two main findings: (i) a supplier’s climate innovation helps its customer firms to reduce CO2 emissions; (ii) customer firms, on average, reveal a strong preference for suppliers that are climate innovators, and climate innovation helps suppliers to attract new customers, especially those with high environmental scores and high emissions. However, there is a variety of potential endogeneity issues that could jeopardize our main results. As an example, it is possible that other ESG-related firm-level policies, rather than the climate patent ratio, attract new business customers, and that these ESG-related firm-level policies are correlated with climate innovation policies. There are other concerns about selection effects and simultaneity. To address such omitted variable concern herefore, we develop two distinct instrumental variables that introduce exogenous shock to the supplier’s climate patents.

In Section 5.1, we introduce the concept of patent examiner leniency (Sampat and Williams, 2019; Farre-Mensa et al., 2020) and apply it to climate patents. Section 5.2 uses technology obsolescence (Ma, 2022) to shock the innovation ability of climate inventors.

5.1 Patent Examiner Leniency

Our first identification strategy exploits quasi-random shocks in the probability of patent approvals. The patent literature has demonstrated that some patent examiners are more lenient and
grant patents more easily than other examiners in the same field of patent applications, for person-specific, idiosyncratic reasons (Cockburn et al., 2002). Moreover, in most USPTO technology art units, patent examiners are assigned to patent applications in a quasi-random fashion (Sampat and Williams, 2019; Farre-Mensa et al., 2020). As a result, we utilize the patent examiner leniency as an instrumental variable (IV) for the number of climate patents issued to a supplier firm. Since the examiners are randomly assigned, the leniency metric is likely to be orthogonal to any remaining ESG-related firm practices (other than climate patents) that aid in attracting new customer firms.

Specifically, we use the difference in leniency attitudes between examiners reviewing climate-related and non-climate-related patent applications to instrument for the key independent variable, the climate patent ratio. We separate each firm’s patent applications into climate-related and non-climate-related applications. The Examiner Leniency Diff. is defined as,

$$\text{Examiner’s Leniency Difference}_{i,t} = \frac{1}{N_{\text{clim}}} \sum_{p \in \text{Clim}} \left[\text{Examiner Leniency}_{p,e} \right] - \frac{1}{N_{\text{non-clim}}} \sum_{p \in \text{Non-Clim}} \left[\text{Examiner Leniency}_{p,e} \right]$$

where N_{clim} ($N_{\text{non-clim}}$) is the number of climate (non-climate) patent applications submitted by firm i and receive decisions (granting or rejection) from the USPTO in year t. Examiner Leniency$_{p,e}$ is the leniency of the examiner e who reviews the given patent application p. Specifically, it is constructed as

$$\text{Examiner Leniency}_{p,e} = \frac{\text{Num_PatGranted}_e - I(\text{Granted})_p}{\text{Num_PatExamined}_e - 1} - \frac{\text{Num_PatGranted}_a - I(\text{Granted})_p}{\text{Num_PatExamined}_a - 1}$$

$\frac{\text{Num_PatGranted}_e - I(\text{Granted})_p}{\text{Num_PatExamined}_e - 1}$ is examiner e’s all-time granting ratio in her career in the USPTO, excluding the focal application p (the standard leave-one-out method in Melero, Palomeras, and Wehrheim (2020)). When calculating an examiner’s leniency, we use all patent applications, including climate and non-climate patent applications. We require each examiner to examine at least ten applications in the dataset. The same method applies to calculating the average granting ratio of the art unit to which the application is assigned and to which examiner e belongs: $\frac{\text{Num_PatGranted}_a - I(\text{Granted})_p}{\text{Num_PatExamined}_a - 1}$. Hence, our leniency measure is a relative leniency measure within an

37Patent applications are assigned to art units of patent examiners by technological specialization. There are about 900 art units, so they are a fairly granular subdivision of the patent examination process.
art unit.

Table 9 columns (1) and (2) show the first stage regressions for our instrument. The IV (Examiner’s Leniency Difference) positively and strongly predicts the climate patent ratio. Intuitively, suppose a firm is relatively luckier in its climate patent applications (drawing more lenient examiners on average) compared to its non-climate applications. In that case, it will have a higher climate patent (granting) ratio. The 1st stage result is robust if we also control for the climate patent application ratio (defined as the number of climate patent applications divided by the number of non-climate patent applications) in column (2). Finally, the F-tests show that instrumental weakness is not an issue in our study.

We report the second-stage regressions in the remaining columns of Panel A.38 We perform a sample split each year for all new customer firms by the annual median environmental score. We then define two new dependent variables: the number of new customers with high (low) environmental scores. Panels A (columns (6) – (8)) and B perform similar sample splits but use the environmental supply chain policy dummy and total GHG emissions (Scope 1+2), respectively. The environmental supply chain policy dummy equals one if a customer firm considers the environmental dimension when selecting potential suppliers. In summary, we confirm similar results as in Table 6: (i) Supplier’s climate innovation can attract new customers only after 2010; (ii) climate innovation attracts new customers, especially those with high environmental scores and high emissions. Thus, our results strengthen the causality argument and significantly mitigate concerns about omitted variable bias.

5.2 Technology Obsolescence

A possible limitation of the patent examiner leniency instrument is that it relies on random variation in patenting probabilities, but does not incorporate exogenous variation in a firm’s innovative capability. Therefore, we introduce our second instrument, technology obsolescence, which relies on the second type of variation and is constructed following Ma (2022). The rationale is that knowledge itself becomes increasingly obsolete, and as a climate innovator’s knowledge ages, the innovator is less and less likely to be located at the frontier of climate technology and to pro-

38 Similar to our previous analyses, we always include two interaction terms between the climate patent ratio and the dummies for the periods before and after 2010. As a result, when we instrument the climate patent ratio, we instrument the two interaction terms. The first stage regressions for the two interaction terms are strong and also pass the weak instrument test.
duce relevant innovations for its customers. Crucially, the depreciation of a firm’s knowledge stock measured by technology obsolescence depends on the speed of other firms’ innovation and hence it is usually caused by unexpected technology shocks outside the boundary of the firm. Thus, the obsolescence metric should measure technology shocks, such as jumps caused by disruptive innovation), that are likely orthogonal to the innovator’s own policies and choices to attract new customer firms through climate patents. Arguing in favor of this interpretation, Ma (2022) shows that technology obsolescence overwhelmingly measures technology-specific shocks that vary widely within each firm, not firm-specific variations.

In the following exercise, we focus on the sample between 2011 and 2021.\footnote{This follows our previous results that climate innovation begins to attract new customers after 2010. In unreported results, our instrument is much weaker in the first stage when we use the sample between 1995 and 2010. This is because we need large patent stocks to calculate the citation dynamics, and in the early periods, there are not enough climate patents accumulated for supplier firms.} We divide each firm’s patent stocks (cumulative patents in each period) into climate-related and non-climate-related patents. To focus on the specific obsolescence of climate patents and control for firm heterogeneity in general technology obsolescence, we use the difference in technology obsolescence between climate and non-climate innovations to instrument the key independent variable, the climate patent ratio. Specifically, our key variable Tech. Obsolescence Diff. is defined as

\[
\text{Tech. Obsolescence Diff}_{i,t} = \text{Tech. Obsolescence(Clima}\text{te Innovation)}_{i,t} - \text{Tech. Obsolescence(Non-Cli}\text{mate Innovation)}_{i,t}
\]

where \(\text{Tech. Obsolescence(Clima}\text{te Innovation)}_{i,t}\) (\(\text{Tech. Obsolescence(Non-Cli}\text{mate Innovation)}_{i,t}\)) captures the year-\(t\) period obsolescence for the past climate technologies (all other patents) invented by firm \(i\). We calculate the technology obsolescence following Ma (2022) as the decay in the knowledge space of firm \(i\)’s (legacy) patent stock. Specifically, firm \(i\)’s climate patent stock in year \(t\) is defined as the set of all (Y02) climate patents obtained by firm \(i\) prior to and including year \(t - 5\), and the knowledge space of this climate patent stock as the set of all third-party patents (including non-climate patents) cited by the patents in this climate patent stock. Finally, we calculate the annual citations in year \(t - 5\) and in year \(t\) of this knowledge space, and define Technology

\[
39
\]
Obsolescence as the difference between both citation measures,

\[\text{Tech. Obsolescence} (\text{Climate Innovation})_{i,t} = \text{Num Cite}_t (\text{Knowledge Space} (\text{Climate Innovation}_{i,t})) - \text{Num Cite}_{t-5} (\text{Knowledge Space} (\text{Climate Innovation}_{i,t})) \] (9)

We define the measure for the non-climate patent stock accordingly. Table 10 reports our results. The first stage regression is recorded in Column (1); it shows that Tech. Obsolescence Diff. is negatively associated with the climate patent ratio, with the coefficient significant at the 1% level. The remaining columns report the results for the second stage regressions. They confirm that climate innovation helps to attract new business customers, in line with our findings for the Examiner Leniency instrument. The results also show that the effect is only significant for customers with either high environmental scores or high initial GHG emissions, measured in year \(t-1 \).

6 Conclusions

Nearly all observers agree that a successful transition to net zero within a few decades will not be possible without major technological advances that offer affordable climate-neutral energy supplies and other technologies that allow to reduce, capture or reverse GHG emissions. However, there is no micro-level evidence so far that climate innovation is indeed effective in reducing GHG emissions. On the contrary, there are concerns that substitution or rebound effects may dominate any technology gains (Bolton et al., 2023).

In this paper, we study the emission and business expansion impact of climate innovation (identified with the “Y02” scheme), focusing on the innovator’s downstream supply chain network. More specifically, we ask (i) whether climate innovation invented by a supplier firm allows its customer firms to reduce CO2 emissions, and (ii) whether climate innovation facilitates the acquisition of new business customers and what types of customers.

We find that climate innovations help customer firms to reduce carbon emissions, and that the effect can be pinpointed to innovations embedded in the supplier’s products. Emissions savings are accentuated for high-emission firms and firm with stronger environmental concerns. To study the dynamics of supply chains, we construct a discrete choice model of customer firms’ choice of potential suppliers. We show that customer firms generally have a strong preference for suppliers’ climate
innovations. Moreover, we show that climate innovation allows suppliers to expand their customer base. We find that the capacity to attract new customers is more pronounced for customers with a strong preference for reducing their carbon footprint: these include firms with a strong preference for environmental protection, measured by their high environmental scores in their ESG ratings, but also firms with elevated GHG emissions that presumably anticipate regulatory or investor pressure to curtail their GHG emissions. In summary, we find that climate innovations are effective in reducing carbon emissions along the supply chain and influence the dynamics of supply chain relationships.
References

Acemoglu, Daron, Philippe Aghion, Lint Barrage, and David Hémous, 2020, Climate change, directed innovation and energy transition: Long-run consequences of the shale gas revolution, Federal Reserve Bank of Richmond.

Atta-Darkua, Vaska, Simon Glossner, Philipp Krueger, and Pedro Matos, 2022, Decarbonizing institutional investor portfolios, Available at SSRN .

Bena, Jan, and Elena Simintzi, 2022, Machines Could not Compete with Chinese Labor: Evidence from US Firms’ Innovation, Available at SSRN 2613248 .

Bolton, Patrick, and Marcin T Kacperczyk, 2021b, Carbon disclosure and the cost of capital, *Available at SSRN 3755613*.

Brandon, Rajna Gibson, Simon Glossner, Philipp Krueger, Pedro Matos, and Tom Steffen, 2020, Responsible Institutional Investing around the World, *Available at SSRN 3525530*.

Choi, Darwin, Zhenyu Gao, Wenxi Jiang, and Hulai Zhang, 2022, Carbon stock devaluation, *Available at SSRN 3589952*.

Chu, Yongqiang, Xuan Tian, and Wenyu Wang, 2019, Corporate innovation along the supply chain, *Management Science* 65, 2445–2466.

EPO, 2015, Climate change mitigation technologies in europe - evidence from patent and economic data, Technical report.

HomRoy, Swarnodeep, and Asad Rauf, 2023, Climate policies in supply chains, *Available at SSRN 4446166*.

IEA, 2021, It’s time for the world to rise to its energy innovation challenge, Technical report.

Kuang, Huan, and Bing Liang, 2022, Climate-related innovations: Economic value and risk mitigation, *Available at SSRN 4150960*.

Ma, Song, 2022, Technological Obsolescence, *Yale University School of Management Working Paper*.

Reza, Syed Walid, and Yanhui Wu, 2022, The value of green innovation, *Available at SSRN 4212739*.

Schiller, Christoph, 2018, Global Supply-Chain Networks and Corporate Social Responsibility, in *13th Annual Mid-Atlantic Research Conference in Finance (MARC) Paper*.

Zhao, George, Kevin Webster, and Yin Luo, 2015, The Logistics of Supply Chain Alpha, *Signal Processing*.
This figure examines the relationship between the climate patent ratio and the number of new customers attracted by each supplier firm. The coefficients of $\beta_{1,Year}$ in the regression equation below are plotted in the figure:

$$
\text{Num_New_Customer_Firms}_{i,t} = \sum_{Year=2005}^{2021} \beta_{1,Year} \left(\text{Clim_Patent_Ratio}_{i,t-1} \times I(Year) \right) + \beta_2 \text{Num_General_Patent}_{i,t-1} + \beta_3 X_{i,t-1} + \chi_{NAIC-4,t} + \epsilon_{i,t} \tag{10}
$$

In this equation, $\text{Num_New_Customer_Firms}_{i,t}$ represents the count of new customer firms that establish supplier-customer relationships with firm i in year t. The dependent variable is transformed using the natural logarithm of $(1+x)$. The variable $\text{Clim_Patent_Ratio}_{i,t-1}$ denotes the ratio of climate-related patents (Y02) newly invented by the firm to all newly invented patents by the same firm in year $t-1$. The regression includes control variables for the firm, such as Firm Size, Tobin’s Q, Cash, Book Leverage, ROA, Capital Expenditure, sales growth, and the number of existing customers. These variables are measured in year $t-1$. Additionally, industry (NAICS 4-digit) × year fixed effects are incorporated. Standard errors are clustered at the firm level, and the confidence intervals presented in the figure reflect a 90% confidence level.
Figure 2. Market Response to Climate Patent Granting

This figure displays the annual median market reaction to climate patent and general patent grants. The sample used in this analysis includes all granted US patents owned by CRSP Compustat firms, as documented in Kogan et al. (2017). The market value of patents, as measured in Kogan et al. (2017), is utilized to assess the market reaction. The orange line represents the median annual market value (in millions) for climate-related patents in the Y02E and Y02C categories. These categories were the first to be identified as climate change mitigation patents (CCMT) by the European Patent Office (EPO) in 2010. On the other hand, the dark blue line illustrates the median annual market value (in millions) for all general (non-climate-related) patents.

EPO introduced "Y02"
This figure serves as an illustration of how we measure the relatedness between a climate patent and the products of the company that owns the patent. To obtain the content of the patent, we adopt the approach outlined in Kogan et al. (2021), which involves utilizing the title, abstract, and detailed description text of the patent. For product descriptions, we obtain information from 10-K filings, specifically Item 1 that pertains to the Business Description, following the methodology of Hoberg and Phillips (2016). To compute the pairwise text similarity between the climate patent text and the product description text, we employ the Stanford GloVe model (Global Vectors for Word Representation). In our calculations, we focus on nouns and incorporate TFIDF adjustments. For a more comprehensive understanding of the detailed procedures, please refer to Kogan et al. (2021). In the figure, we present an example where the climate patent is titled "Enhanced Queue Management For Power Control Of Data Storage Device". This patent is classified as a climate patent due to its Y02D tag. The patent is issued to Western Digital Corporation, and we subsequently download Item 1 of the company’s 10-K filing for the same year as the patent application.
Table 1. Summary Statistics of Supplier-Customer Relationships

This table presents summary statistics based on our supply chain data at the level of supplier-customer relationships. To create this dataset, we combine the FactSet Revere and Compustat customer segment datasets, following the methodology outlined in Schiller (2018). In Panel A, we provide summary statistics for the full sample, covering the period from 2003 to 2021. The dataset comprises a total of 73,477 unique supplier-customer relationships. Each observation represents a unique supplier-customer pair with start date and end date. Following Barrot and Sauvagnat (2016), we consider firm A to be a supplier to firm C in all years from the first to the last year that A reports C as one of its customers. Panel B presents similar summary statistics, but only for supplier-customer relationships with non-missing sales information. This allows us to focus on relationships where sales data is available and provides a more detailed understanding of the characteristics of these relationships. In Panel C, we present the industry distribution of both suppliers and customers. Industries are classified using the NAICS (North American Industry Classification System) at the 2-digit level. We highlight industry frequencies that exceed 2% to emphasize the most prevalent industries in the dataset.

<table>
<thead>
<tr>
<th>Number of Supply Chain Relationships</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compustat Supplier and Compustat Customer</td>
<td>73,447</td>
<td>100%</td>
</tr>
<tr>
<td>+ Customer Firm with ESG Score (Refinitiv + S&P Global + Sustainalytics)</td>
<td>48,563</td>
<td>66%</td>
</tr>
<tr>
<td>By Duration Years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 year or less than 1 year</td>
<td>14,261</td>
<td>29%</td>
</tr>
<tr>
<td>2 years</td>
<td>6,971</td>
<td>14%</td>
</tr>
<tr>
<td>3 years</td>
<td>3,683</td>
<td>8%</td>
</tr>
<tr>
<td>4 years</td>
<td>2,387</td>
<td>5%</td>
</tr>
<tr>
<td>5 years and more</td>
<td>6,499</td>
<td>13%</td>
</tr>
<tr>
<td>Ongoing</td>
<td>14,762</td>
<td>30%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Subsample (2003 – 2021) with Available Sales Data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compustat Supplier and Compustat Customer</td>
<td>9,118</td>
<td>100%</td>
</tr>
<tr>
<td>+ Customer Firm with Emission Data from Trucost</td>
<td>3,574</td>
<td>39%</td>
</tr>
<tr>
<td>By Duration Years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 year or less than 1 year</td>
<td>1,620</td>
<td>45%</td>
</tr>
<tr>
<td>2 years</td>
<td>512</td>
<td>14%</td>
</tr>
<tr>
<td>3 years</td>
<td>353</td>
<td>10%</td>
</tr>
<tr>
<td>4 years</td>
<td>271</td>
<td>8%</td>
</tr>
<tr>
<td>5 years and more (or ongoing)</td>
<td>818</td>
<td>23%</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Agriculture (11)</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Mining (21)</td>
<td>0.00%</td>
<td>1.27%</td>
</tr>
<tr>
<td>Utilities (22)</td>
<td>0.00%</td>
<td>0.20%</td>
</tr>
<tr>
<td>Constructions (23)</td>
<td>0.06%</td>
<td>0.10%</td>
</tr>
<tr>
<td>Manufacturing (31)</td>
<td>0.00%</td>
<td>0.02%</td>
</tr>
<tr>
<td>Manufacturing (32)</td>
<td>0.00%</td>
<td>0.14%</td>
</tr>
<tr>
<td>Manufacturing (33)</td>
<td>0.01%</td>
<td>0.57%</td>
</tr>
<tr>
<td>Wholesale Trade (42)</td>
<td>0.00%</td>
<td>0.15%</td>
</tr>
<tr>
<td>Retail Trade (44)</td>
<td>0.06%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Retail Trade (45)</td>
<td>0.00%</td>
<td>0.06%</td>
</tr>
<tr>
<td>Transportation (48)</td>
<td>0.00%</td>
<td>0.58%</td>
</tr>
<tr>
<td>Transportation (49)</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Information (51)</td>
<td>0.01%</td>
<td>0.16%</td>
</tr>
<tr>
<td>Finance (52)</td>
<td>0.00%</td>
<td>0.18%</td>
</tr>
<tr>
<td>Real Estate (53)</td>
<td>0.00%</td>
<td>0.14%</td>
</tr>
<tr>
<td>Technical Services (54)</td>
<td>0.01%</td>
<td>0.12%</td>
</tr>
<tr>
<td>Administrative Service (56)</td>
<td>0.00%</td>
<td>0.04%</td>
</tr>
<tr>
<td>Educational Services (61)</td>
<td>0.00%</td>
<td>0.04%</td>
</tr>
<tr>
<td>Health Care (62)</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Entertainment (71)</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Accommodation and Food (72)</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Other Services (81)</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Public Administration (92)</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Panel C: Industry Distribution of Supply Chain Relationships

Electronic copy available at: https://ssrn.com/abstract=4557447
Table 2. Summary Statistics: Firm-Level Observations

This table presents summary statistics at the firm level. Panel A provides statistics for the customer sample, which consists of firms that have at least one supplier firm selling products or services to them. Only supplier-customer relationships with available sales information are included in the analysis. Firms in the financial, retail, and wholesale sectors, as well as those without CO2 emission information from Trucost, are excluded from the sample. Panel B presents summary statistics for the Compustat sample, which includes firms that have established new supplier-customer relationships with at least one customer between 2005 and 2021. Firms in the financial, retail, and wholesale industries are excluded from this sample. Panel C displays the pairwise correlations between environmental scores obtained from three ESG (Environmental, Social, and Governance) databases. Finally, Panel D reports the pairwise correlations between greenhouse gas (GHG) emissions (both total and intensity) and our composite ESG score.

Panel A: Customer Sample

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>p50</th>
<th>p75</th>
<th>p90</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier’s Climate Patent Ratio</td>
<td>0.016</td>
<td>0.000</td>
<td>0.000</td>
<td>0.038</td>
<td>0.059</td>
<td>2,831</td>
</tr>
<tr>
<td>Supplier’s General Patent Number</td>
<td>0.769</td>
<td>0.000</td>
<td>1.099</td>
<td>2.639</td>
<td>1.305</td>
<td>2,831</td>
</tr>
<tr>
<td>Number of Suppliers</td>
<td>4.720</td>
<td>2.000</td>
<td>5.000</td>
<td>12.000</td>
<td>6.240</td>
<td>2,831</td>
</tr>
<tr>
<td>Firm Size</td>
<td>10.010</td>
<td>10.149</td>
<td>11.027</td>
<td>11.841</td>
<td>1.557</td>
<td>2,831</td>
</tr>
<tr>
<td>Ln(Firm Age)</td>
<td>3.916</td>
<td>4.094</td>
<td>4.635</td>
<td>4.898</td>
<td>0.898</td>
<td>2,769</td>
</tr>
<tr>
<td>PPE</td>
<td>8.306</td>
<td>8.496</td>
<td>9.585</td>
<td>10.085</td>
<td>2.673</td>
<td>2,831</td>
</tr>
<tr>
<td>Sales Growth</td>
<td>0.095</td>
<td>0.065</td>
<td>0.164</td>
<td>0.318</td>
<td>0.251</td>
<td>2,785</td>
</tr>
<tr>
<td>Ln(Scope 1 Emissions)</td>
<td>13.019</td>
<td>12.867</td>
<td>14.740</td>
<td>17.100</td>
<td>2.673</td>
<td>2,831</td>
</tr>
<tr>
<td>Scope 1 Emission Intensity</td>
<td>3.923</td>
<td>3.493</td>
<td>5.526</td>
<td>6.863</td>
<td>2.097</td>
<td>2,738</td>
</tr>
</tbody>
</table>

Panel B: Compustat Sample (Suppliers)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>p50</th>
<th>p75</th>
<th>p90</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of New Customer Firms</td>
<td>0.340</td>
<td>0.000</td>
<td>0.693</td>
<td>1.099</td>
<td>0.584</td>
<td>41,777</td>
</tr>
<tr>
<td>Number of New Customer Firms (High E-score)</td>
<td>0.197</td>
<td>0.000</td>
<td>0.000</td>
<td>0.693</td>
<td>0.438</td>
<td>41,777</td>
</tr>
<tr>
<td>Number of New Customer Firms (Low E-score)</td>
<td>0.201</td>
<td>0.000</td>
<td>0.000</td>
<td>0.693</td>
<td>0.421</td>
<td>41,777</td>
</tr>
<tr>
<td>Number ofExisting Customer Firms</td>
<td>1.269</td>
<td>1.099</td>
<td>2.079</td>
<td>2.773</td>
<td>1.038</td>
<td>41,777</td>
</tr>
<tr>
<td>Climate Patent Ratio</td>
<td>0.021</td>
<td>0.000</td>
<td>0.000</td>
<td>0.047</td>
<td>0.106</td>
<td>41,777</td>
</tr>
<tr>
<td>Number of General Patents</td>
<td>0.841</td>
<td>0.000</td>
<td>1.099</td>
<td>3.045</td>
<td>1.478</td>
<td>41,777</td>
</tr>
<tr>
<td>Tobin’s Q</td>
<td>2.109</td>
<td>1.564</td>
<td>2.422</td>
<td>3.919</td>
<td>1.617</td>
<td>39,039</td>
</tr>
<tr>
<td>Cash</td>
<td>0.219</td>
<td>0.127</td>
<td>0.322</td>
<td>0.597</td>
<td>0.236</td>
<td>41,209</td>
</tr>
<tr>
<td>Book Leverage</td>
<td>0.346</td>
<td>0.310</td>
<td>0.537</td>
<td>0.746</td>
<td>0.320</td>
<td>40,913</td>
</tr>
<tr>
<td>ROA</td>
<td>0.055</td>
<td>0.104</td>
<td>0.165</td>
<td>0.235</td>
<td>0.229</td>
<td>37,988</td>
</tr>
<tr>
<td>CAPX</td>
<td>0.047</td>
<td>0.029</td>
<td>0.058</td>
<td>0.107</td>
<td>0.058</td>
<td>39,084</td>
</tr>
<tr>
<td>Sales Growth</td>
<td>0.126</td>
<td>0.068</td>
<td>0.199</td>
<td>0.427</td>
<td>0.434</td>
<td>38,543</td>
</tr>
</tbody>
</table>

Panel C: Pairwise Correlations among Environmental Scores of Different Providers

<table>
<thead>
<tr>
<th>Environmental Score Providers</th>
<th>Refinitiv</th>
<th>S&P Global</th>
<th>Sustainalytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinitiv</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S&P Global</td>
<td>0.660</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Sustainalytics</td>
<td>0.665</td>
<td>0.711</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Panel D: Pairwise Correlation between ESG Scores and Emissions

<table>
<thead>
<tr>
<th>Environmental Score</th>
<th>ESC Management</th>
<th>GHG Emission Total</th>
<th>GHG Emission Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Score</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESC Management Dummy</td>
<td>0.639</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>GHG Emission (Total)</td>
<td>0.185</td>
<td>0.113</td>
<td>1.000</td>
</tr>
<tr>
<td>GHG Emission (Intensity)</td>
<td>0.122</td>
<td>0.041</td>
<td>0.589</td>
</tr>
</tbody>
</table>
Table 3. Supplier’s Climate Patents and Customer’s CO2 Emission Changes

This table examines the relationship between changes in a customer firm’s CO2 emissions and the climate patent ratio of its suppliers. The sample used in the regressions follows Table 2, Panel A. Each observation in the customer sample represents a firm-year observation with at least one supplier firm that sold products or services to the given firm in that specific year. We only include supplier-customer relationships with non-missing sales information. Customer firms in the financial, retail, and wholesale sectors are excluded from the sample. Additionally, firms without CO2 emission information from Trucost are also excluded. The dependent variable in Panel A (Panel B) is the change in Scope 1 (Scope 2) CO2 emissions from year \(t \) to \(t + k \). Total emissions is represented by the natural logarithm of CO2 emissions in tons, and emission intensity is calculated as the natural logarithm of total emissions divided by output. The main independent variable, Supplier’s Climate Patent Ratio \([t]\), is the weighted climate patent ratio of all suppliers selling products or services to the given customer in year \(t \). The weight assigned to each supplier is based on their sales to the customer. The climate patent ratio is calculated as the number of climate patents newly invented divided by the total number of patents invented in year \(t \). Firm controls include firm size, Tobin’s Q, cash, book leverage, return on assets (ROA), capital expenditures, sales growth, and property, plant, and equipment (PPE). All regressions include industry (NAICS 4-digit) × year fixed effects. To enhance readability, coefficients are multiplied by 100. Standard errors are clustered at the firm level. Statistical significance is denoted by *, **, and *** , indicating significance at the 10%, 5%, and 1% levels, respectively.

<table>
<thead>
<tr>
<th>Panel A: Scope 1 CO2 Emissions</th>
<th>(1) (t+1-t)</th>
<th>(2) (t+2-t)</th>
<th>(3) (t+3-t)</th>
<th>(4) (t+4-t)</th>
<th>(5) (t+5-t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions by Customer Firm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.059)</td>
<td>(1.143)</td>
<td>(1.942)</td>
<td>(1.769)</td>
<td>(2.563)</td>
</tr>
<tr>
<td>Supplier’s General Patent Number ([t])</td>
<td>-0.140</td>
<td>-0.444</td>
<td>0.282</td>
<td>0.352</td>
<td>-0.139</td>
</tr>
<tr>
<td></td>
<td>(1.016)</td>
<td>(1.023)</td>
<td>(2.113)</td>
<td>(1.946)</td>
<td>(3.042)</td>
</tr>
<tr>
<td>Customer Firm Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Industry × Year F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>1804</td>
<td>1743</td>
<td>1782</td>
<td>1711</td>
<td>1625</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.099</td>
<td>0.073</td>
<td>0.131</td>
<td>0.102</td>
<td>0.151</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Scope 2 CO2 Emissions</th>
<th>(1) (t+1-t)</th>
<th>(2) (t+2-t)</th>
<th>(3) (t+3-t)</th>
<th>(4) (t+4-t)</th>
<th>(5) (t+5-t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions by Customer Firm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t])</td>
<td>-1.253</td>
<td>-1.065</td>
<td>-6.297***</td>
<td>-5.490***</td>
<td>-6.662**</td>
</tr>
<tr>
<td></td>
<td>(1.445)</td>
<td>(1.228)</td>
<td>(2.402)</td>
<td>(1.949)</td>
<td>(2.798)</td>
</tr>
<tr>
<td>Supplier’s General Patent Number ([t])</td>
<td>0.268</td>
<td>-0.242</td>
<td>1.707</td>
<td>1.176</td>
<td>1.554</td>
</tr>
<tr>
<td></td>
<td>(1.177)</td>
<td>(0.980)</td>
<td>(1.921)</td>
<td>(1.538)</td>
<td>(2.722)</td>
</tr>
<tr>
<td>Customer Firm Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Industry × Year F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>1804</td>
<td>1743</td>
<td>1782</td>
<td>1711</td>
<td>1625</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.098</td>
<td>0.071</td>
<td>0.132</td>
<td>0.104</td>
<td>0.153</td>
</tr>
</tbody>
</table>
Table 4. Supplier’s Climate Patents and Customer’s CO2 Emission Changes (Alternative Setups)

This table presents regression results using alternative setups. In Panel A, we include supplier-customer relationships with both non-missing and missing supplier-to-customer sales information when constructing the customer sample and calculating the weighted climate patent ratio of suppliers. We use the supplier’s annual total sales from Compustat as weights. In Panel B, we introduce an interaction term between the supplier’s climate patent ratio and the initial Scope 1 emissions measured at year \(t \). In Panel C, we differentiate between product and process patents and define two separate measures: the climate patent ratio (process) and the climate patent ratio (product). Panel D involves running regressions using a supplier \(\times \) customer \(\times \) year sample. The dependent variable is the customer’s future Scope 1 CO2 emissions in year \(t + k \). The climate patent number represents the count of newly invented climate patents in year \(t \) by the supplier in the supplier-customer pair. Standard errors are clustered at the firm level in Panel A to C and at the supplier-customer pair level in Panel D. Statistical significance is denoted by *, **, and ***, indicating significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Alternative Weighting Methods

<table>
<thead>
<tr>
<th>Emissions by Customer Firm</th>
<th>(1) t+1 - t</th>
<th>(2) t+2 - t</th>
<th>(3) t+3 - t</th>
<th>(4) t+4 - t</th>
<th>(5) t+5 - t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier’s Climate Patent Ratio [t]</td>
<td>-2.276***</td>
<td>-1.783***</td>
<td>-2.079***</td>
<td>-1.624***</td>
<td>-2.083***</td>
</tr>
<tr>
<td>(0.740)</td>
<td>(0.643)</td>
<td>(1.106)</td>
<td>(1.149)</td>
<td>(1.698)</td>
<td>(2.099)</td>
</tr>
<tr>
<td>Supplier’s General Patent Number [t]</td>
<td>1.714**</td>
<td>1.011</td>
<td>2.956***</td>
<td>2.060</td>
<td>4.172**</td>
</tr>
<tr>
<td>(0.783)</td>
<td>(0.658)</td>
<td>(1.277)</td>
<td>(1.756)</td>
<td>(2.238)</td>
<td>(3.039)</td>
</tr>
</tbody>
</table>

Customer Firm Controls	Y	Y	Y	Y	Y
Industry \(\times \) Year F.E.	Y	Y	Y	Y	Y
Num. Obs.	5733	5605	5693	5552	4852
Adjusted \(R^2 \)	0.101	0.113	0.119	0.124	0.150

Panel B: Interaction with Prior Customer Emissions

<table>
<thead>
<tr>
<th>Emissions by Customer Firm</th>
<th>(1) t+1 - t</th>
<th>(2) t+2 - t</th>
<th>(3) t+3 - t</th>
<th>(4) t+4 - t</th>
<th>(5) t+5 - t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier’s Climate Patent Ratio [t]</td>
<td>0.500</td>
<td>0.532</td>
<td>0.153</td>
<td>0.745</td>
<td>-2.161</td>
</tr>
<tr>
<td>(3.671)</td>
<td>(1.686)</td>
<td>(7.221)</td>
<td>(2.389)</td>
<td>(11.372)</td>
<td>(3.728)</td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio [t] (\times) Scope 1 Emissions (Total) [t]</td>
<td>-0.192</td>
<td>-0.306</td>
<td>-0.292</td>
<td>-0.446</td>
<td>-0.956</td>
</tr>
<tr>
<td>(0.262)</td>
<td>(0.508)</td>
<td>(0.803)</td>
<td>(0.968)</td>
<td>(1.032)</td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio [t] (\times) Scope 1 Emissions (Intensity) [t]</td>
<td>-0.574**</td>
<td>-0.962***</td>
<td>-1.071*</td>
<td>-1.466**</td>
<td>-1.676**</td>
</tr>
<tr>
<td>(0.269)</td>
<td>(0.361)</td>
<td>(0.585)</td>
<td>(0.674)</td>
<td>(0.796)</td>
<td></td>
</tr>
</tbody>
</table>

Customer Firm Controls	Y	Y	Y	Y	Y
Industry \(\times \) Year F.E.	Y	Y	Y	Y	Y
Num. Obs.	1796	1735	1773	1702	1616
Adjusted \(R^2 \)	0.110	0.079	0.121	0.142	0.192

Panel C: Product Patents vs. Process Patents

<table>
<thead>
<tr>
<th>Emissions by Customer Firm</th>
<th>(1) t+1 - t</th>
<th>(2) t+2 - t</th>
<th>(3) t+3 - t</th>
<th>(4) t+4 - t</th>
<th>(5) t+5 - t</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2.319)</td>
<td>(2.294)</td>
<td>(2.601)</td>
<td>(2.632)</td>
<td>(2.756)</td>
<td>(3.215)</td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio [t] (Product Patent)</td>
<td>0.011</td>
<td>-1.314</td>
<td>-1.776</td>
<td>-2.511</td>
<td>-6.811**</td>
</tr>
<tr>
<td>(1.537)</td>
<td>(1.339)</td>
<td>(2.436)</td>
<td>(2.547)</td>
<td>(3.078)</td>
<td>(3.976)</td>
</tr>
</tbody>
</table>

Customer Firm Controls	Y	Y	Y	Y	Y
Industry \(\times \) Year F.E.	Y	Y	Y	Y	Y
Num. Obs.	1796	1735	1773	1702	1616
Adjusted \(R^2 \)	0.110	0.079	0.121	0.142	0.192
Panel D: Supplier-Customer Pair Sample

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scope 1 Emission Total</td>
<td></td>
<td></td>
<td>Scope 1 Emission Intensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured in</td>
<td>$t+1$</td>
<td>$t+2$</td>
<td>$t+3$</td>
<td>$t+1$</td>
<td>$t+2$</td>
<td>$t+3$</td>
</tr>
<tr>
<td>Supplier’s General Patent Number [t]</td>
<td>1.932</td>
<td>2.362</td>
<td>0.471</td>
<td>2.556</td>
<td>2.571</td>
<td>0.965</td>
</tr>
<tr>
<td>Customer Firm Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Supplier Firm Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Supplier-Customer Pair F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>47674</td>
<td>35308</td>
<td>26430</td>
<td>47205</td>
<td>34971</td>
<td>26169</td>
</tr>
<tr>
<td>Adj R^2</td>
<td>0.971</td>
<td>0.970</td>
<td>0.969</td>
<td>0.964</td>
<td>0.965</td>
<td>0.968</td>
</tr>
</tbody>
</table>

Panel E: Supplier-Customer Pair Sample (Scope 2 Emissions)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scope 2 Emission Total</td>
<td></td>
<td></td>
<td>Scope 2 Emission Intensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured in</td>
<td>$t+1$</td>
<td>$t+2$</td>
<td>$t+3$</td>
<td>$t+1$</td>
<td>$t+2$</td>
<td>$t+3$</td>
</tr>
<tr>
<td>Supplier’s General Patent Number [t]</td>
<td>-1.243</td>
<td>-0.657</td>
<td>-1.365</td>
<td>-0.894</td>
<td>-0.593</td>
<td>-2.049</td>
</tr>
<tr>
<td>Customer Firm Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Supplier Firm Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Supplier-Customer Pair F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>47634</td>
<td>35279</td>
<td>26403</td>
<td>47165</td>
<td>34942</td>
<td>26142</td>
</tr>
<tr>
<td>Adj R^2</td>
<td>0.928</td>
<td>0.916</td>
<td>0.907</td>
<td>0.813</td>
<td>0.794</td>
<td>0.786</td>
</tr>
</tbody>
</table>
Table 5. Discrete Choice Model Regarding the Choice of Suppliers by Customers

This table estimates a McFadden discrete choice model of the selection of potential suppliers by each customer firm. For each customer firm that has at least one supplier in a given year, the set of alternatives includes (i) those suppliers that are selected by the given customer firm and (ii) those suppliers with similar products that are not selected by the given customer. We use Hoberg and Phillips (2016)'s text-based network industry classification (TNIC) to obtain the second set of suppliers (not selected). The regression sample is at the level of customer × potential supplier × year. We use OLS to estimate the model. The dependent variable is a dummy that equals one if the customer firm selects the supplier to establish the supply chain relationship in year \(t\). Climate Patent Ratio \([t-1]\) is measured for the supplier in year \(t-1\). Environmental Score \([t]\) is the score of the customer. Customer (supplier) control variables include customer (supplier) firm size, Tobin’s \(q\), ROA, PPE, book leverage, and sales growth. Robust standard errors are clustered at the customer firm level. *, **, *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

<table>
<thead>
<tr>
<th>Discrete Choice Model Estimated by OLS</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier's Climate Patent Ratio ([t-1])</td>
<td>0.021***</td>
<td>0.015***</td>
<td>0.017</td>
<td>-0.098***</td>
<td>-0.079***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier's Num General Patents ([t-1])</td>
<td>0.003***</td>
<td>0.003***</td>
<td>0.003***</td>
<td>0.016***</td>
<td>0.010***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × I(Post 2010)</td>
<td>0.026***</td>
<td>0.018***</td>
<td>-0.119***</td>
<td>-0.095***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × I(Before 2010)</td>
<td>0.004</td>
<td>0.002</td>
<td>0.008</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Num General Patents ([t-1]) × I(Post 2010)</td>
<td>0.003***</td>
<td>0.004***</td>
<td>0.018***</td>
<td>0.011***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Num General Patents ([t-1]) × I(Before 2010)</td>
<td>0.004***</td>
<td>0.003***</td>
<td>0.008</td>
<td>0.007***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × Customer’s Environmental Score ([t])</td>
<td>0.013***</td>
<td>0.016***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Num General Patents ([t-1]) × Customer’s Environmental Score ([t])</td>
<td>-0.001</td>
<td>-0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × Customer’s Social Score ([t])</td>
<td>-0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × Customer’s Governance Score ([t])</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × Customer’s Environmental Score ([t]) × I(Post 2010)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.017***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × Customer’s Environmental Score ([t]) × I(Before 2010)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × Customer’s GHG Emissions (Total) ([t])</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.008***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × Customer’s Firm Size ([t])</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.002</td>
<td>0.006*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × Customer’s GHG Emissions (Intensity) ([t])</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.011***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × Customer’s GHG Emissions (Total) ([t]) × I(Post 2010)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.011***</td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) ×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Coefficient</td>
<td>Standard Error</td>
<td>p-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer’s GHG Emissions (Total) [t] × I(Before 2010)</td>
<td>(0.003)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio [t-1] × Customer’s GHG Emissions (Intensity) [t] × I(Post 2010)</td>
<td>0.014***</td>
<td>(0.002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio [t-1] × Customer’s GHG Emissions (Intensity) [t] × I(Before 2010)</td>
<td>0.005*</td>
<td>(0.002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Y</th>
<th>Y</th>
<th>Y</th>
<th>Y</th>
<th>Y</th>
<th>Y</th>
<th>Y</th>
<th>Y</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Firm Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Supplier Firm Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Customer Firm F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Supplier NAICS-4 F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>1696323 1696323 1696323 1668520 1696323 1466725 1466725 1466725 1466725</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.065 0.065 0.065 0.065 0.065 0.069 0.069 0.069 0.069</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=4557447
This table examines the association between the number of new customer firms that purchase goods or services from a given supplier and the supplier’s climate patent ratio. The regression sample includes all CRSP-Compustat firms with at least one new customer establishing supplier-customer relationships with the firm from 2005 to 2021. Supplier firms in the financial, retail, and wholesale industries are excluded from the sample. The dependent variable is the number of new customer firms that establish supplier-customer relationships with firm i in year t. We conduct $\ln(1 + x)$ transformation for this dependent variable. The main independent variable, Climate Patent Ratio$_{t-1}$, is the ratio of new climate patents (Y02) newly invented by the firm in year $t-1$. Post-2010 and Before-2010 are dummies equal to 1 after and before 2010, respectively. Number of General Patents measures the total number of new patents invented by the firm in year $t-1$. In Panel A, we conduct a sample split every year for all new customer firms by the annual median environmental score. Then, we define two new dependent variables: the number of new customers with high (low) environmental scores. Panels B and C conduct similar sample splits but use the environmental supply chain policy dummy and the total GHG emissions (Scope 1+2), respectively. The environmental supply chain (ESC) policy dummy equals one if a customer firm considers the environmental dimension in selecting potential suppliers. Firm controls include Firm Size, Tobin’s Q, Cash, Book Leverage, ROA, Capital Expenditure, sales growth, and the number of existing customers (all measured in year $t-1$). Industry (NAICS 4-digit) fixed effects are included in columns (1) to (3), and firm F.E. are added in columns (4) to (6). Standard errors are clustered at the firm level. *, **, *** denote statistical significance at the 10%, 5%, and 1% levels respectively.

Panel A: Customer Firms Split by Environmental Score

<table>
<thead>
<tr>
<th>Customer Type</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier’s ...</td>
<td>All Firms</td>
<td>High Environmental Score</td>
<td>Low Environmental Score</td>
<td>All Firms</td>
<td>High Environmental Score</td>
<td>Low Environmental Score</td>
</tr>
<tr>
<td>Climate Patent Ratio $[t-1] \times$ Post 2010</td>
<td>0.110***</td>
<td>0.129***</td>
<td>-0.024</td>
<td>0.098**</td>
<td>0.105***</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.033)</td>
<td>(0.026)</td>
<td>(0.047)</td>
<td>(0.038)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>Climate Patent Ratio $[t-1] \times$ Before 2010</td>
<td>-0.022</td>
<td>-0.014</td>
<td>-0.008</td>
<td>-0.035</td>
<td>-0.055</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.029)</td>
<td>(0.022)</td>
<td>(0.053)</td>
<td>(0.042)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>Number of General Patents $[t-1]$</td>
<td>0.016***</td>
<td>0.009***</td>
<td>0.013***</td>
<td>0.015*</td>
<td>0.008</td>
<td>0.012*</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.008)</td>
<td>(0.006)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Firm Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Industry F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>30471</td>
<td>30471</td>
<td>30471</td>
<td>30285</td>
<td>30285</td>
<td>30285</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.218</td>
<td>0.147</td>
<td>0.176</td>
<td>0.275</td>
<td>0.202</td>
<td>0.234</td>
</tr>
</tbody>
</table>
Panel B: Customer Firms Split by Environmental Supply Chain (ESC) Policy

<table>
<thead>
<tr>
<th>Customer Type</th>
<th>All Firms</th>
<th>ESC Management = Y</th>
<th>ESC Management = N</th>
<th>All Firms</th>
<th>ESC Management = Y</th>
<th>ESC Management = N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier’s ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate Patent Ratio ([t-1] \times \text{Post 2010})</td>
<td>0.058</td>
<td>0.072**</td>
<td>-0.030</td>
<td>0.048</td>
<td>0.082**</td>
<td>-0.036</td>
</tr>
<tr>
<td>(0.036)</td>
<td>(0.032)</td>
<td>(0.023)</td>
<td>(0.046)</td>
<td>(0.041)</td>
<td>(0.030)</td>
<td></td>
</tr>
<tr>
<td>Climate Patent Ratio ([t-1] \times \text{Before 2010})</td>
<td>-0.025</td>
<td>-0.014</td>
<td>-0.007</td>
<td>-0.040</td>
<td>-0.047</td>
<td>0.023</td>
</tr>
<tr>
<td>(0.035)</td>
<td>(0.026)</td>
<td>(0.026)</td>
<td>(0.051)</td>
<td>(0.037)</td>
<td>(0.053)</td>
<td></td>
</tr>
<tr>
<td>Number of General Patents ([t-1])</td>
<td>0.016***</td>
<td>0.009***</td>
<td>0.013***</td>
<td>0.012</td>
<td>0.010*</td>
<td>0.009*</td>
</tr>
<tr>
<td>(0.004)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.008)</td>
<td>(0.006)</td>
<td>(0.005)</td>
<td></td>
</tr>
<tr>
<td>Firm Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Industry F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>29827</td>
<td>29827</td>
<td>29827</td>
<td>29648</td>
<td>29648</td>
<td>29648</td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.215</td>
<td>0.165</td>
<td>0.155</td>
<td>0.262</td>
<td>0.208</td>
<td>0.206</td>
</tr>
</tbody>
</table>

Panel C: Customer Firms Split by GHG Emissions (Scope 1+2)

<table>
<thead>
<tr>
<th>Customer Type</th>
<th>All Firms</th>
<th>High Total Emission</th>
<th>Low Total Emission</th>
<th>All Firms</th>
<th>High Total Emission</th>
<th>Low Total Emission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier’s ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate Patent Ratio ([t-1] \times \text{Post 2010})</td>
<td>0.081**</td>
<td>0.176***</td>
<td>-0.117***</td>
<td>0.037</td>
<td>0.093**</td>
<td>-0.070**</td>
</tr>
<tr>
<td>(0.039)</td>
<td>(0.038)</td>
<td>(0.031)</td>
<td>(0.049)</td>
<td>(0.044)</td>
<td>(0.034)</td>
<td></td>
</tr>
<tr>
<td>Climate Patent Ratio ([t-1] \times \text{Before 2010})</td>
<td>-0.001</td>
<td>-0.030</td>
<td>0.018</td>
<td>-0.019</td>
<td>-0.084*</td>
<td>0.058</td>
</tr>
<tr>
<td>(0.046)</td>
<td>(0.035)</td>
<td>(0.034)</td>
<td>(0.062)</td>
<td>(0.044)</td>
<td>(0.050)</td>
<td></td>
</tr>
<tr>
<td>Number of General Patents ([t-1])</td>
<td>0.044***</td>
<td>0.017***</td>
<td>0.047***</td>
<td>0.042***</td>
<td>0.020***</td>
<td>0.042***</td>
</tr>
<tr>
<td>(0.006)</td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.010)</td>
<td>(0.007)</td>
<td>(0.009)</td>
<td></td>
</tr>
<tr>
<td>Firm Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Industry F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>29495</td>
<td>29495</td>
<td>29495</td>
<td>29275</td>
<td>29275</td>
<td>29275</td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.279</td>
<td>0.189</td>
<td>0.253</td>
<td>0.346</td>
<td>0.259</td>
<td>0.333</td>
</tr>
</tbody>
</table>
Table 7. Climate Patent Ratio, Existing Customers, and Operating Performance

This table presents the extensions of Table 6. Panel A splits all climate patents based on their market value. Every year, we sort all climate patents into two groups according to the market value of patents measured in Kogan et al. (2017). Climate Patent Ratio (High Value) is defined as the number of high-value climate patents divided by all new patents invented by the given firm in year \(t - 1 \). Panel B splits all climate patents based on the relatedness between each climate patent and its holder’s product descriptions. The relatedness is calculated following the procedures in Figure 3. Panel C interacts the climate patent ratio in year \(t - 1 \) with the MCCC index as constructed in Ardia et al. (2022). Firm controls include Firm Size, Tobin’s Q, Cash, Book Leverage, ROA, Capital Expenditure, sales growth, and the number of existing customers (all measured in year \(t - 1 \)). Standard errors are clustered at the firm level. *, **, *** denote statistical significance at the 10%, 5%, and 1% levels respectively.

Panel A: Existing Customer’s Leave

Customer Split by	(1) Number of Existing Customer’s Leave	(2) Environmental Score	(3) Low E-Score
	All Customers	High E-Score	Low E-Score
Supplier’s …			
Climate Patent Ratio (t-1) × Post 2010	0.004 (0.031)	0.006 (0.024)	-0.019 (0.022)
Climate Patent Ratio (t-1) × Before 2010	0.016 (0.029)	0.012 (0.022)	0.008 (0.019)
Firm Controls	Y	Y	Y
Year F.E.	Y	Y	Y
Num. Obs.	52014	52014	52014
Adjusted R\(^2\)	0.351	0.240	0.280

Panel B: Operating Performance

<table>
<thead>
<tr>
<th>Supplier’s …</th>
<th>(1) Operating Performance</th>
<th>(2) Ln(Sales)</th>
<th>(3) ROA</th>
<th>(4) Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate Patent Ratio (t-1) × Post 2010</td>
<td>0.080∗∗ (0.038)</td>
<td>0.004 (0.009)</td>
<td>0.095 (0.191)</td>
<td></td>
</tr>
<tr>
<td>Climate Patent Ratio (t-1) × Before 2010</td>
<td>-0.045 (0.049)</td>
<td>-0.022∗ (0.013)</td>
<td>-0.114∗ (0.068)</td>
<td></td>
</tr>
<tr>
<td>Firm Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Year F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>62776</td>
<td>63062</td>
<td>62776</td>
<td></td>
</tr>
<tr>
<td>Adjusted R(^2)</td>
<td>0.961</td>
<td>0.736</td>
<td>0.546</td>
<td></td>
</tr>
</tbody>
</table>
This table presents extensions of Table 6. In Panel A, climate patents are split based on their market value. Every year, we sort all climate patents into two groups according to the market value of patents measured in Kogan et al. (2017). Climate Patent Ratio (High Value) is defined as the number of high-value climate patents divided by all new patents invented by the given firm in year $t - 1$. In Panel B, climate patents are split based on the relatedness between each climate patent and its holder’s product descriptions. The relatedness is calculated following the procedures in Figure 3. Panel C interacts the climate patent ratio in year $t - 1$ with the MCCC index as constructed in Ardia et al. (2022). Firm controls include Firm Size, Tobin’s Q, Cash, Book Leverage, ROA, Capital Expenditure, sales growth, and the number of existing customers (all measured in year $t - 1$). Standard errors are clustered at the firm level. *, **, *** denote statistical significance at the 10%, 5%, and 1% levels respectively.

Panel A: Patents Split by KPSS Patent Value

<table>
<thead>
<tr>
<th>Customer Split by</th>
<th>(1) Number of New Customer Firms</th>
<th>(2) Environmental Score</th>
<th>(3) Total GHG Emissions</th>
<th>(4) Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier’s ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate Patent Ratio (High Value) × Post 2010</td>
<td>0.134*** (0.051)</td>
<td>0.074 (0.054)</td>
<td>0.167*** (0.064)</td>
<td>-0.014</td>
</tr>
<tr>
<td>Climate Patent Ratio (Low Value) × Post 2010</td>
<td>0.024 (0.053)</td>
<td>-0.105*** (0.037)</td>
<td>-0.048 (0.055)</td>
<td>-0.057</td>
</tr>
<tr>
<td>Firm Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Firm F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>30285</td>
<td>30285</td>
<td>27811</td>
<td>27811</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.203</td>
<td>0.234</td>
<td>0.273</td>
<td>0.342</td>
</tr>
</tbody>
</table>

Panel B: Patents Split by Product-to-Patent Relatedness

<table>
<thead>
<tr>
<th>Customer Split by</th>
<th>(1) Number of New Customer Firms</th>
<th>(2) Environmental Score</th>
<th>(3) Total GHG Emissions</th>
<th>(4) Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier’s ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate Patent Ratio (High Related) × Post 2010</td>
<td>0.139** (0.066)</td>
<td>-0.005 (0.053)</td>
<td>0.155** (0.074)</td>
<td>-0.048</td>
</tr>
<tr>
<td>Climate Patent Ratio (Low Related) × Post 2010</td>
<td>0.073 (0.056)</td>
<td>0.010 (0.051)</td>
<td>0.048 (0.072)</td>
<td>-0.097*</td>
</tr>
<tr>
<td>Firm Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Firm F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>30285</td>
<td>30285</td>
<td>27811</td>
<td>27811</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.203</td>
<td>0.234</td>
<td>0.273</td>
<td>0.342</td>
</tr>
</tbody>
</table>

Panel C: Interaction with MCCC Index

<table>
<thead>
<tr>
<th>Customer Split by</th>
<th>(1) Number of New Customer Firms</th>
<th>(2) Environmental Score</th>
<th>(3) Total GHG Emissions</th>
<th>(4) Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier’s ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate Patent Ratio</td>
<td>-0.070 (0.044)</td>
<td>-0.061 (0.043)</td>
<td>-0.177*** (0.046)</td>
<td>-0.055</td>
</tr>
<tr>
<td>Climate Patent Ratio × MCCC Index</td>
<td>0.006** (0.003)</td>
<td>0.006** (0.003)</td>
<td>0.013*** (0.003)</td>
<td>0.007**</td>
</tr>
<tr>
<td>Firm Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Firm F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>23062</td>
<td>23062</td>
<td>22598</td>
<td>22598</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.192</td>
<td>0.222</td>
<td>0.248</td>
<td>0.325</td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=4557447
Table 9. Climate Patent Ratio and New Customer Firms (Examiner Leniency as Instrument)

This table examines the association between the number of new customer firms that purchase goods or services from a given supplier and the supplier’s climate patent ratio in a 2SLS-regression setup. In each panel, columns (1) and (2) show the 1st stage regressions, and columns (3) – (8) tabulate the 2nd stage regressions. We use the difference of leniency between examiners who assess climate patent and non-climate patent applications to instrument the key independent variable, climate patent ratio. Specifically, the Examiner Leniency Diff. is defined as,

\[
\text{Examiner’s Leniency Difference}_{i,t} = \frac{1}{N_{\text{clim}}} \sum_{p \in \text{Clim}} \left[\text{Examiner Leniency}_{p,e} \right] - \frac{1}{N_{\text{non-clim}}} \sum_{p \in \text{Non-Clim}} \left[\text{Examiner Leniency}_{p,e} \right]
\]

where \(N_{\text{clim}} \ (N_{\text{non-clim}})\) is the number of climate (non-climate) patent applications submitted by firm \(i\) and receive decisions (granting or rejection) from the USPTO in year \(t\). Examiner Leniency \(\text{Examiner Leniency}_{p,e}\) is the leniency of the examiner \(e\) who reviews the given patent application \(p\). Specifically, it is constructed as

\[
\text{Examiner Leniency}_{p,e} = \frac{\text{Num_Pat_Granted}_e - I(\text{Granted})_p}{\text{Num_Pat_Examined}_e - 1} - \frac{\text{Num_Pat_Granted}_a - I(\text{Granted})_p}{\text{Num_Pat_Examined}_a - 1}
\]

In Panel A, we conduct a sample split every year for all new customer firms by the annual median environmental score. Then, we define two new dependent variables: the number of new customers with high (low) environmental scores. Panel A (columns (4) – (6)) and B conduct similar sample splits but use the environmental supply chain policy dummy and the total GHG emissions (Scope 1+2), respectively. The environmental supply chain (ESC) policy dummy equals one if a customer firm considers the environmental dimension in selecting potential suppliers. Firm controls include Firm Size, Tobin’s Q, Cash, Book Leverage, ROA, Capital Expenditure, sales growth, and the number of existing customers (all measured in year \(t - 1\)). Standard errors are clustered at the firm level. *, **, *** denote statistical significance at the 10%, 5%, and 1% levels respectively.
Panel A: Split Customer Firms by Environmental Score

<table>
<thead>
<tr>
<th>First Stage</th>
<th>Second Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate Patent Ratio</td>
<td>Number of New Customer Firms</td>
</tr>
<tr>
<td>Examiner’s Leniency Difference</td>
<td></td>
</tr>
<tr>
<td>(Instrumental Variable)</td>
<td></td>
</tr>
<tr>
<td>Climate Patent App Ratio</td>
<td></td>
</tr>
<tr>
<td>0.165***</td>
<td>0.172***</td>
</tr>
<tr>
<td>(0.033)</td>
<td>(0.028)</td>
</tr>
</tbody>
</table>

- Climate Patent Ratio × Post 2010
 - (Instrumented by Examiner’s Leniency Difference × Post 2010)
 - 0.228**
 - (0.110)

- Climate Patent Ratio × Before 2010
 - (Instrumented by Examiner’s Leniency Difference × Before 2010)
 - 0.215
 - (0.168)

- Climate Patent App Ratio × Post 2010
 - (Instrumented by Examiner’s Leniency Difference × Post 2010)
 - -0.065
 - (0.127)

- Climate Patent App Ratio × Before 2010
 - (Instrumented by Examiner’s Leniency Difference × Before 2010)
 - 0.010
 - (0.126)

- Firm Controls
 - Y Y Y Y Y Y Y Y
- Year F.E. and Firm F.E.
 - Y Y Y Y Y Y Y Y
- Num. Obs.
 - 3497 3497 3318 3318 3318 3265 3265 3265

Panel B: Split Customer Firms by GHG Emissions

<table>
<thead>
<tr>
<th>First Stage</th>
<th>Second Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate Patent Ratio</td>
<td>Number of New Customer Firms</td>
</tr>
<tr>
<td>Examiner’s Leniency Difference</td>
<td></td>
</tr>
<tr>
<td>(Instrumental Variable)</td>
<td></td>
</tr>
<tr>
<td>Climate Patent App Ratio</td>
<td></td>
</tr>
<tr>
<td>0.165***</td>
<td>0.172***</td>
</tr>
<tr>
<td>(0.033)</td>
<td>(0.028)</td>
</tr>
</tbody>
</table>

- Climate Patent Ratio × Post 2010
 - (Instrumented by Examiner’s Leniency Difference × Post 2010)
 - 0.203*
 - (0.116)

- Climate Patent Ratio × Before 2010
 - (Instrumented by Examiner’s Leniency Difference × Before 2010)
 - 0.184
 - (0.144)

- Climate Patent App Ratio × Post 2010
 - (Instrumented by Examiner’s Leniency Difference × Post 2010)
 - -0.056
 - (0.134)

- Climate Patent App Ratio × Before 2010
 - (Instrumented by Examiner’s Leniency Difference × Before 2010)
 - -0.050
 - (0.127)

- Firm Controls
 - Y Y Y Y Y Y Y Y
- Year F.E. and Firm F.E.
 - Y Y Y Y Y Y Y Y
- Num. Obs.
 - 3497 3497 3318 3318 3318 3265 3265 3265

Electronic copy available at: https://ssrn.com/abstract=4557447
This table examines the association between the number of new customer firms that purchase goods or services from suppliers and the suppliers’ climate patent ratio in a 2SLS-regression setup. Column (1) shows the 1st stage regressions, and columns (2) – (5) tabulate the 2nd stage regressions. The sample ranges from 2011 to 2021. We use the difference in technology obsolescence between climate and non-climate innovation to instrument the key independent variable, the climate patent ratio. Specifically, the Tech. Obsolescence Diff. is defined as,

\[
\text{Tech. Obsolescence Diff}_{i,t} = \text{Tech. Obsolescence(Climate Innovation)}_{i,t} - \text{Tech. Obsolescence(Non-Climate Innovation)}_{i,t}
\]

(13)

Tech. Obsolescence(Climate Innovation)$_{i,t}$ captures the year-t level of obsolescence for the climate technologies invented by firm i. We calculate the tech obsolescence following Ma (2022). The set of climate technologies for firm i in year t is defined as all climate patents (Y02) invented by firm i before and up to year $t - 5$. Then, the knowledge space of this set of climate tech contains all third-party-filled patents (including non-climate patents) cited by firm i’s climate patents before $t - 5$. Finally, we calculate the annual citation change between year t and $t - 5$ for this set of knowledge space.

\[
\text{Tech. Obsolescence(Climate Innovation)}_{i,t} = \text{Num Cite}_t(\text{Knowledge Space(Climate Innovation}_{i,t}) - \text{Num Cite}_{t-5}(\text{Knowledge Space(Climate Innovation}_{i,t}))
\]

(14)

Firm controls include Firm Size, Tobin’s Q, Cash, Book Leverage, ROA, Capital Expenditure, sales growth, and the number of existing customers (all measured in year $t - 1$). Standard errors are clustered at the firm level. *, **, *** denote statistical significance at the 10%, 5%, and 1% levels respectively.

<table>
<thead>
<tr>
<th>First Stage</th>
<th>Second Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{Climate Patent Ratio [t]}</td>
<td>\text{Number of New Customer Firms}</td>
</tr>
<tr>
<td></td>
<td>\text{Split by Environmental Score}</td>
</tr>
<tr>
<td></td>
<td>High</td>
</tr>
<tr>
<td>Technology Obsolescence Difference (Instrumental Variable)</td>
<td>-0.014*** (0.004)</td>
</tr>
<tr>
<td>\text{Climate Patent Ratio [t-1]} (Instrumented by Tech. Obsolescence Diff.)</td>
<td></td>
</tr>
<tr>
<td>Number General Patents [t-1]</td>
<td>0.087*** (0.005)</td>
</tr>
<tr>
<td>Number Existing Customers [t-1]</td>
<td>0.006 (0.005)</td>
</tr>
<tr>
<td>\text{Firm Controls}</td>
<td>Y</td>
</tr>
<tr>
<td>\text{Firm F.E.}</td>
<td>Y</td>
</tr>
<tr>
<td>Industry × Year F.E.</td>
<td>Y</td>
</tr>
<tr>
<td>Weak Instrument F Test</td>
<td>16.627</td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>6257</td>
</tr>
</tbody>
</table>
Internet Appendix for

“Climate Innovation and Carbon Emissions: Evidence from Supply Chain Networks”
This table presents the annual number of climate-related patents filed by CRSP-Compustat firms from 2000 to 2020 (sorted by filing year). To compile this data, we combined updated patent data from Kogan et al. (2017) with recent patent data from PatentsView.org, covering the granting years 2020 to 2022. To identify climate patents, we used the “Y02” tag in the CPC codes of each patent, excluding Y02A. Climate patents were further categorized into climate process and product patents, following the approach outlined in Bena et al. (2022) and Ma (2022) for general patents. Specifically, a patent is classified as a process patent if its first claim (typically the most important claim) begins with phrases such as “A process of,” “A method of,” “A method for,” and so on.

Table A1. Number of Climate-related Patents (Y02) by Patent Application Year

<table>
<thead>
<tr>
<th>Patents by (Filing) Year</th>
<th>Total Climate Related Patents</th>
<th>Climate Process Patents</th>
<th>Climate Product Patents</th>
<th>Buildings Y02B</th>
<th>GHG Storage Y02C</th>
<th>ICT Y02D</th>
<th>Energy Y02E</th>
<th>Production Y02P</th>
<th>Transportation Y02T</th>
<th>Wastewater Y02W</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>3199</td>
<td>966</td>
<td>2233</td>
<td>197</td>
<td>44</td>
<td>471</td>
<td>978</td>
<td>844</td>
<td>937</td>
<td>62</td>
</tr>
<tr>
<td>2001</td>
<td>4164</td>
<td>1272</td>
<td>2892</td>
<td>289</td>
<td>61</td>
<td>612</td>
<td>1380</td>
<td>1110</td>
<td>1115</td>
<td>108</td>
</tr>
<tr>
<td>2002</td>
<td>4587</td>
<td>1428</td>
<td>3159</td>
<td>329</td>
<td>60</td>
<td>630</td>
<td>1412</td>
<td>1219</td>
<td>1366</td>
<td>97</td>
</tr>
<tr>
<td>2003</td>
<td>4421</td>
<td>1352</td>
<td>3069</td>
<td>412</td>
<td>39</td>
<td>635</td>
<td>1290</td>
<td>1091</td>
<td>1348</td>
<td>107</td>
</tr>
<tr>
<td>2004</td>
<td>4436</td>
<td>1311</td>
<td>3125</td>
<td>367</td>
<td>34</td>
<td>734</td>
<td>1267</td>
<td>920</td>
<td>1467</td>
<td>96</td>
</tr>
<tr>
<td>2005</td>
<td>4562</td>
<td>1256</td>
<td>3306</td>
<td>429</td>
<td>35</td>
<td>831</td>
<td>1353</td>
<td>876</td>
<td>1487</td>
<td>78</td>
</tr>
<tr>
<td>2006</td>
<td>4643</td>
<td>1373</td>
<td>3270</td>
<td>369</td>
<td>40</td>
<td>859</td>
<td>1323</td>
<td>882</td>
<td>1614</td>
<td>94</td>
</tr>
<tr>
<td>2007</td>
<td>5041</td>
<td>1567</td>
<td>3474</td>
<td>409</td>
<td>43</td>
<td>1063</td>
<td>1419</td>
<td>953</td>
<td>1635</td>
<td>72</td>
</tr>
<tr>
<td>2008</td>
<td>5476</td>
<td>1691</td>
<td>3785</td>
<td>426</td>
<td>60</td>
<td>1286</td>
<td>1615</td>
<td>849</td>
<td>1818</td>
<td>64</td>
</tr>
<tr>
<td>2009</td>
<td>5058</td>
<td>1624</td>
<td>3434</td>
<td>448</td>
<td>54</td>
<td>1101</td>
<td>1612</td>
<td>786</td>
<td>1658</td>
<td>69</td>
</tr>
<tr>
<td>2010</td>
<td>5773</td>
<td>1853</td>
<td>3920</td>
<td>571</td>
<td>57</td>
<td>1288</td>
<td>1862</td>
<td>910</td>
<td>1818</td>
<td>79</td>
</tr>
<tr>
<td>2011</td>
<td>6486</td>
<td>2096</td>
<td>4390</td>
<td>646</td>
<td>70</td>
<td>1542</td>
<td>1946</td>
<td>987</td>
<td>2168</td>
<td>60</td>
</tr>
<tr>
<td>2012</td>
<td>7235</td>
<td>2490</td>
<td>4745</td>
<td>663</td>
<td>61</td>
<td>2085</td>
<td>1899</td>
<td>957</td>
<td>2390</td>
<td>93</td>
</tr>
<tr>
<td>2013</td>
<td>6968</td>
<td>2475</td>
<td>4493</td>
<td>684</td>
<td>80</td>
<td>2136</td>
<td>1732</td>
<td>914</td>
<td>2216</td>
<td>101</td>
</tr>
<tr>
<td>2014</td>
<td>6746</td>
<td>2314</td>
<td>4432</td>
<td>663</td>
<td>61</td>
<td>1887</td>
<td>1631</td>
<td>1008</td>
<td>2367</td>
<td>74</td>
</tr>
<tr>
<td>2015</td>
<td>7464</td>
<td>2192</td>
<td>5272</td>
<td>663</td>
<td>100</td>
<td>1892</td>
<td>1778</td>
<td>1154</td>
<td>2800</td>
<td>87</td>
</tr>
<tr>
<td>2016</td>
<td>7290</td>
<td>2125</td>
<td>5165</td>
<td>694</td>
<td>82</td>
<td>1923</td>
<td>1612</td>
<td>1161</td>
<td>2701</td>
<td>86</td>
</tr>
<tr>
<td>2017</td>
<td>7216</td>
<td>2028</td>
<td>5188</td>
<td>664</td>
<td>66</td>
<td>1853</td>
<td>1737</td>
<td>1185</td>
<td>2615</td>
<td>43</td>
</tr>
<tr>
<td>2018</td>
<td>6355</td>
<td>1650</td>
<td>4705</td>
<td>594</td>
<td>50</td>
<td>1620</td>
<td>1609</td>
<td>1030</td>
<td>2282</td>
<td>45</td>
</tr>
<tr>
<td>2019</td>
<td>5331</td>
<td>1429</td>
<td>3902</td>
<td>502</td>
<td>42</td>
<td>1461</td>
<td>1357</td>
<td>751</td>
<td>1890</td>
<td>39</td>
</tr>
<tr>
<td>2020</td>
<td>2400</td>
<td>644</td>
<td>1756</td>
<td>235</td>
<td>12</td>
<td>750</td>
<td>466</td>
<td>309</td>
<td>824</td>
<td>38</td>
</tr>
<tr>
<td>Total</td>
<td>114851</td>
<td>35136</td>
<td>79715</td>
<td>10314</td>
<td>1151</td>
<td>26609</td>
<td>31278</td>
<td>19896</td>
<td>38516</td>
<td>1572</td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=4557447
Panel B: Process and Product Patents by CPC Y02 Categories

<table>
<thead>
<tr>
<th>(Filing) Year</th>
<th>Buildings Y02B</th>
<th>ICT Y02D</th>
<th>Energy Y02E</th>
<th>Waste Y02W</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>13</td>
<td>6.34%</td>
<td>192</td>
<td>93.66%</td>
</tr>
<tr>
<td>2001</td>
<td>43</td>
<td>14.14%</td>
<td>261</td>
<td>85.86%</td>
</tr>
<tr>
<td>2002</td>
<td>56</td>
<td>16.62%</td>
<td>281</td>
<td>83.38%</td>
</tr>
<tr>
<td>2003</td>
<td>63</td>
<td>14.79%</td>
<td>363</td>
<td>85.21%</td>
</tr>
<tr>
<td>2004</td>
<td>59</td>
<td>15.71%</td>
<td>328</td>
<td>84.29%</td>
</tr>
<tr>
<td>2005</td>
<td>59</td>
<td>13.05%</td>
<td>393</td>
<td>86.95%</td>
</tr>
<tr>
<td>2006</td>
<td>58</td>
<td>14.50%</td>
<td>342</td>
<td>85.50%</td>
</tr>
<tr>
<td>2007</td>
<td>81</td>
<td>16.46%</td>
<td>441</td>
<td>83.54%</td>
</tr>
<tr>
<td>2008</td>
<td>94</td>
<td>20.39%</td>
<td>367</td>
<td>79.61%</td>
</tr>
<tr>
<td>2009</td>
<td>94</td>
<td>19.50%</td>
<td>388</td>
<td>80.50%</td>
</tr>
<tr>
<td>2010</td>
<td>103</td>
<td>16.64%</td>
<td>516</td>
<td>83.36%</td>
</tr>
<tr>
<td>2011</td>
<td>150</td>
<td>21.22%</td>
<td>577</td>
<td>78.78%</td>
</tr>
<tr>
<td>2012</td>
<td>161</td>
<td>21.96%</td>
<td>782</td>
<td>78.04%</td>
</tr>
<tr>
<td>2013</td>
<td>179</td>
<td>22.69%</td>
<td>710</td>
<td>77.31%</td>
</tr>
<tr>
<td>2014</td>
<td>183</td>
<td>21.71%</td>
<td>660</td>
<td>78.29%</td>
</tr>
<tr>
<td>2015</td>
<td>163</td>
<td>19.93%</td>
<td>655</td>
<td>80.07%</td>
</tr>
<tr>
<td>2016</td>
<td>146</td>
<td>18.43%</td>
<td>646</td>
<td>81.57%</td>
</tr>
<tr>
<td>2017</td>
<td>144</td>
<td>19.23%</td>
<td>605</td>
<td>80.77%</td>
</tr>
<tr>
<td>2018</td>
<td>104</td>
<td>16.88%</td>
<td>512</td>
<td>83.12%</td>
</tr>
<tr>
<td>2019</td>
<td>55</td>
<td>15.45%</td>
<td>574</td>
<td>84.55%</td>
</tr>
<tr>
<td>2020</td>
<td>14</td>
<td>28.00%</td>
<td>72</td>
<td>72.00%</td>
</tr>
<tr>
<td>Total</td>
<td>2022</td>
<td>22.35%</td>
<td>8996</td>
<td>77.65%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(Filing) Year</th>
<th>Production Y02P</th>
<th>Transportation Y02T</th>
<th>GHG Storage Y02C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Process Patents</td>
<td>Product Patents</td>
<td>Process Patents</td>
</tr>
<tr>
<td>2000</td>
<td>364</td>
<td>41.36%</td>
<td>516</td>
</tr>
<tr>
<td>2001</td>
<td>473</td>
<td>40.53%</td>
<td>694</td>
</tr>
<tr>
<td>2002</td>
<td>553</td>
<td>43.61%</td>
<td>715</td>
</tr>
<tr>
<td>2003</td>
<td>507</td>
<td>44.24%</td>
<td>639</td>
</tr>
<tr>
<td>2004</td>
<td>436</td>
<td>45.51%</td>
<td>522</td>
</tr>
<tr>
<td>2005</td>
<td>356</td>
<td>38.61%</td>
<td>566</td>
</tr>
<tr>
<td>2006</td>
<td>402</td>
<td>43.79%</td>
<td>516</td>
</tr>
<tr>
<td>2007</td>
<td>415</td>
<td>41.96%</td>
<td>574</td>
</tr>
<tr>
<td>2008</td>
<td>390</td>
<td>43.48%</td>
<td>507</td>
</tr>
<tr>
<td>2009</td>
<td>386</td>
<td>46.23%</td>
<td>449</td>
</tr>
<tr>
<td>2010</td>
<td>425</td>
<td>44.32%</td>
<td>534</td>
</tr>
<tr>
<td>2011</td>
<td>475</td>
<td>46.07%</td>
<td>556</td>
</tr>
<tr>
<td>2012</td>
<td>435</td>
<td>42.86%</td>
<td>580</td>
</tr>
<tr>
<td>2013</td>
<td>427</td>
<td>43.71%</td>
<td>550</td>
</tr>
<tr>
<td>2014</td>
<td>469</td>
<td>43.51%</td>
<td>609</td>
</tr>
<tr>
<td>2015</td>
<td>512</td>
<td>42.00%</td>
<td>707</td>
</tr>
<tr>
<td>2016</td>
<td>431</td>
<td>37.03%</td>
<td>733</td>
</tr>
<tr>
<td>2017</td>
<td>408</td>
<td>39.73%</td>
<td>619</td>
</tr>
<tr>
<td>2018</td>
<td>232</td>
<td>34.63%</td>
<td>438</td>
</tr>
<tr>
<td>2019</td>
<td>95</td>
<td>39.26%</td>
<td>147</td>
</tr>
<tr>
<td>2020</td>
<td>13</td>
<td>29.55%</td>
<td>31</td>
</tr>
<tr>
<td>Total</td>
<td>8204</td>
<td>42.28%</td>
<td>11202</td>
</tr>
</tbody>
</table>

- Total Patents: 18.35% of 2022 patents fall under Building Y02B, 42.28% under Production Y02P, 53.01% under Transportation Y02T, and 56.81% under GHG Storage Y02C.

Electronic copy available at: https://ssrn.com/abstract=4557447
Table A2. Additional Summary Statistics

Panel A: Pairwise Correlations among New Customer’s Characteristics

<table>
<thead>
<tr>
<th>Pair-wise Correlation</th>
<th>Environmental Score</th>
<th>ESC Management</th>
<th>Industry Adjusted GHG Emission Total</th>
<th>Industry Adjusted GHG Emission Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Score</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESC Management Score</td>
<td>0.639</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry Adjusted GHG Emissions Total</td>
<td>0.159</td>
<td>0.119</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Industry Adjusted GHG Emissions Intensity</td>
<td>0.029</td>
<td>0.015</td>
<td>0.444</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Panel B: Compustat Sample of Firms With At Least One Climate Patent Application

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>p25</th>
<th>p50</th>
<th>p75</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of New Customer Firms</td>
<td>0.477</td>
<td>0.000</td>
<td>0.000</td>
<td>0.693</td>
<td>0.664</td>
<td>4,046</td>
</tr>
<tr>
<td>Number of New Customer Firms (High E-score)</td>
<td>0.277</td>
<td>0.000</td>
<td>0.000</td>
<td>0.693</td>
<td>0.499</td>
<td>4,046</td>
</tr>
<tr>
<td>Number of New Customer Firms (Low E-score)</td>
<td>0.287</td>
<td>0.000</td>
<td>0.000</td>
<td>0.693</td>
<td>0.496</td>
<td>4,046</td>
</tr>
<tr>
<td>Number of Existing Customer Firms</td>
<td>1.824</td>
<td>1.099</td>
<td>1.946</td>
<td>2.639</td>
<td>1.060</td>
<td>4,046</td>
</tr>
<tr>
<td>Climate Patent Ratio</td>
<td>0.184</td>
<td>0.022</td>
<td>0.071</td>
<td>0.211</td>
<td>0.262</td>
<td>4,010</td>
</tr>
<tr>
<td>Climate Patent App. Ratio</td>
<td>0.188</td>
<td>0.034</td>
<td>0.083</td>
<td>0.222</td>
<td>0.253</td>
<td>4,046</td>
</tr>
<tr>
<td>Examiner’s Leniency Diff.</td>
<td>-0.006</td>
<td>-0.049</td>
<td>0.000</td>
<td>0.046</td>
<td>0.105</td>
<td>3,840</td>
</tr>
<tr>
<td>Firm Size</td>
<td>8.294</td>
<td>6.746</td>
<td>8.375</td>
<td>9.892</td>
<td>2.185</td>
<td>4,045</td>
</tr>
<tr>
<td>Tobin’s Q</td>
<td>2.186</td>
<td>1.308</td>
<td>1.749</td>
<td>2.556</td>
<td>1.442</td>
<td>3,686</td>
</tr>
<tr>
<td>Cash</td>
<td>0.218</td>
<td>0.073</td>
<td>0.157</td>
<td>0.315</td>
<td>0.190</td>
<td>4,042</td>
</tr>
<tr>
<td>Book Leverage</td>
<td>0.346</td>
<td>0.125</td>
<td>0.319</td>
<td>0.503</td>
<td>0.279</td>
<td>3,972</td>
</tr>
<tr>
<td>ROA</td>
<td>0.103</td>
<td>0.075</td>
<td>0.129</td>
<td>0.181</td>
<td>0.161</td>
<td>3,981</td>
</tr>
<tr>
<td>CAPX</td>
<td>0.042</td>
<td>0.018</td>
<td>0.031</td>
<td>0.054</td>
<td>0.039</td>
<td>3,997</td>
</tr>
<tr>
<td>Sales Growth</td>
<td>0.074</td>
<td>-0.041</td>
<td>0.046</td>
<td>0.144</td>
<td>0.275</td>
<td>3,975</td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=4557447
This table presents the robustness check for Table 3, where we replace the suppliers’ climate patent ratio with the number of climate patents as the main explanatory variable. The sample used in the regressions follows Table 2, Panel A. Each observation in the customer sample represents a firm-year observation, with at least one supplier firm selling products or services to the given firm in that specific year. We only include supplier-customer relationships with non-missing sales information. Customer firms in the financial, retail, and wholesale sectors are excluded from the sample. Additionally, firms without CO2 emission information from Trucost are also excluded. In Panel A (Panel B), the dependent variable is the change in Scope 1 (Scope 2) CO2 emissions from year \(t \) to \(t + k \). Total emissions is represented by the natural logarithm of CO2 emissions in tonnes, and emissions intensity is calculated as the natural logarithm of total emissions divided by output. The main independent variable, Supplier’s Climate Patent Number \([t]\), is the weighted number of climate patents held by all suppliers selling products or services to a given customer in year \(t \). The weight assigned to each supplier is based on their sales to the customer. The climate patent number is calculated as the natural logarithm of one plus the number of new climate patents invented in year \(t \). Firm controls include firm size, Tobin’s Q, cash, book leverage, return on assets (ROA), capital expenditure, sales growth, and property, plant, and equipment (PPE). All regressions include industry (NAICS 4-digit) × year fixed effects. Standard errors are clustered at the firm level. Statistical significance is denoted by *, **, and ***, indicating significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Scope 1 Emissions

<table>
<thead>
<tr>
<th>Change of Scope 1 CO2 Emissions</th>
<th>(1) (t+1 - t)</th>
<th>(2) (t+2 - t)</th>
<th>(3) (t+3 - t)</th>
<th>(4) (t+4 - t)</th>
<th>(5) (t+5 - t)</th>
<th>(6) (t+4 - t)</th>
<th>(7) (t+5 - t)</th>
<th>(8) (t+4 - t)</th>
<th>(9) (t+5 - t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions by Customer Firm</td>
<td>Total Intensity</td>
</tr>
<tr>
<td>Supplier’s Climate Patent Number ([t])</td>
<td>-2.059 (1.574)</td>
<td>-2.032 (1.545)</td>
<td>-6.387** (2.766)</td>
<td>-6.153 (2.508)</td>
<td>-9.701** (3.997)</td>
<td>-9.603** (3.795)</td>
<td>-12.563** (4.962)</td>
<td>-12.041** (4.770)</td>
<td>-12.238** (5.562)</td>
</tr>
<tr>
<td>Supplier’s General Patent Number ([t])</td>
<td>0.599 (1.551)</td>
<td>0.241 (1.412)</td>
<td>3.576 (2.713)</td>
<td>3.529 (2.363)</td>
<td>5.017 (4.204)</td>
<td>5.336 (3.874)</td>
<td>5.722 (5.449)</td>
<td>5.471 (5.122)</td>
<td>4.770 (6.797)</td>
</tr>
<tr>
<td>Customer Firm Controls</td>
<td>Y Y Y Y Y Y Y Y Y Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry × Year F.E.</td>
<td>Y Y Y Y Y Y Y Y Y Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>1796 1735 1773 1702 1616 1546 1465 1396 1319 1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.109 0.077 0.168 0.123 0.204 0.143 0.242 0.196 0.324 0.256</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Scope 2 Emissions

<table>
<thead>
<tr>
<th>Change of Scope 2 CO2 Emissions</th>
<th>(1) (t+1 - t)</th>
<th>(2) (t+2 - t)</th>
<th>(3) (t+3 - t)</th>
<th>(4) (t+4 - t)</th>
<th>(5) (t+5 - t)</th>
<th>(6) (t+4 - t)</th>
<th>(7) (t+5 - t)</th>
<th>(8) (t+4 - t)</th>
<th>(9) (t+5 - t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions by Customer Firm</td>
<td>Total Intensity</td>
</tr>
<tr>
<td>Supplier’s Climate Patent Number ([t])</td>
<td>-2.887* (1.514)</td>
<td>-2.600** (1.293)</td>
<td>-6.396** (2.508)</td>
<td>-5.992*** (1.911)</td>
<td>-7.506** (3.347)</td>
<td>-6.945*** (2.520)</td>
<td>-8.403* (4.378)</td>
<td>-7.398** (3.253)</td>
<td>-5.760 (5.427)</td>
</tr>
<tr>
<td>Supplier’s General Patent Number ([t])</td>
<td>1.982 (1.439)</td>
<td>1.323 (1.249)</td>
<td>4.254* (2.490)</td>
<td>3.722* (2.095)</td>
<td>4.898 (3.505)</td>
<td>4.673 (2.850)</td>
<td>4.941 (4.536)</td>
<td>3.861 (3.693)</td>
<td>0.730 (5.384)</td>
</tr>
<tr>
<td>Customer Firm Controls</td>
<td>Y Y Y Y Y Y Y Y Y Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry × Year F.E.</td>
<td>Y Y Y Y Y Y Y Y Y Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>1796 1735 1773 1702 1616 1546 1465 1396 1319 1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.110 0.079 0.165 0.121 0.202 0.142 0.239 0.192 0.323 0.254</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=4557447
This table divides the customer sample based on the industry classification of the customer firms. The sample used in the regressions follows Table 2, Panel A. Each observation in the customer sample represents a firm-year observation, where at least one supplier firm sells products or services to the given customer in that specific year. We only include supplier-customer relationships with non-missing sales information. Customer firms in the financial, retail, and wholesale industries are excluded from the sample. Additionally, firms without CO2 emission information from Trucost are also excluded. Total emissions are represented by the natural logarithm of CO2 emissions in tons, and emission intensity is calculated as the natural logarithm of total emissions divided by output. The main independent variable, Supplier’s Climate Patent Ratio \([t]\), is the weighted climate patent ratio of all suppliers that sell products or services to a given customer in year \(t\). The weight assigned to each supplier is based on their sales to the customer. The climate patent ratio is calculated as the number of newly invented climate patents divided by the total number of patents invented in year \(t\). Firm controls include firm size, Tobin’s Q, cash, book leverage, return on assets (ROA), capital expenditure, sales growth, and property, plant, and equipment (PPE). All regressions include industry (NAICS 4-digit) \(\times\) year fixed effects. Standard errors are clustered at the firm level. Statistical significance is denoted by *, **, and ***, indicating significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Customer Firms in Coal Mining, Manufacturing, and Transportation

<table>
<thead>
<tr>
<th>Emissions by Customer Firm</th>
<th>Change in Scope 1 CO2 Emissions (t+1 - t)</th>
<th>(t+2 - t)</th>
<th>(t+3 - t)</th>
<th>(t+4 - t)</th>
<th>(t+5 - t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier’s General Patent Number ([t])</td>
<td>-0.399 (1.119)</td>
<td>-1.354 (1.135)</td>
<td>-0.462 (2.466)</td>
<td>-1.794 (2.363)</td>
<td>-0.086 (3.501)</td>
</tr>
<tr>
<td>Customer Firm Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Industry (\times) Year F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>1387</td>
<td>1342</td>
<td>1369</td>
<td>1316</td>
<td>1259</td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.105</td>
<td>0.083</td>
<td>0.143</td>
<td>0.134</td>
<td>0.142</td>
</tr>
</tbody>
</table>

Panel B: Customer Firms in Services

<table>
<thead>
<tr>
<th>Emissions by Customer Firm</th>
<th>Change in Scope 1 CO2 Emissions (t+1 - t)</th>
<th>(t+2 - t)</th>
<th>(t+3 - t)</th>
<th>(t+4 - t)</th>
<th>(t+5 - t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier’s Climate Patent Ratio ([t])</td>
<td>-1.041 (1.148)</td>
<td>-1.662 (1.102)</td>
<td>-1.695 (1.727)</td>
<td>-2.460 (1.913)</td>
<td>-5.501 (4.116)</td>
</tr>
<tr>
<td>Supplier’s General Patent Number ([t])</td>
<td>1.473 (2.162)</td>
<td>3.812* (2.003)</td>
<td>2.808 (4.498)</td>
<td>7.211* (3.997)</td>
<td>-0.885 (6.018)</td>
</tr>
<tr>
<td>Customer Firm Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Industry (\times) Year F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Num. Obs.</td>
<td>398</td>
<td>382</td>
<td>392</td>
<td>374</td>
<td>344</td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.136</td>
<td>0.057</td>
<td>0.160</td>
<td>0.040</td>
<td>0.194</td>
</tr>
</tbody>
</table>
This table examines different Y02 categories. In this analysis, the Supplier’s Climate Patent Ratio is defined using only one Y02 patent category at a time. The sample used in the regressions follows Table 2, Panel A. Each observation in the customer sample represents a firm-year observation, where at least one supplier firm sells products or services to the given customer in that specific year. We only include supplier-customer relationships with non-missing sales information. Customer firms in the financial, retail, and wholesale industries are excluded from the sample. Additionally, firms without CO2 emission information from Trucost are also excluded. Total emissions are represented by the natural logarithm of CO2 emissions in tons, and emission intensity is calculated as the natural logarithm of total emissions divided by output. The main independent variable, Supplier’s Climate Patent Ratio [t], is the weighted climate patent ratio of all suppliers that sell products or services to a given customer in year t. The weight assigned to each supplier is based on their sales to the customer. The climate patent ratio is calculated as the number of newly invented climate patents divided by the total number of patents invented in year t. Firm controls include firm size, Tobin’s Q, cash, book leverage, return on assets (ROA), capital expenditure, sales growth, and property, plant, and equipment (PPE). All regressions include industry (NAICS 4-digit) × year fixed effects. Standard errors are clustered at the firm level. Statistical significance is denoted by *, **, and ***, indicating significance at the 10%, 5%, and 1% levels, respectively.

Table A5. Supplier’s Climate Patents and Customer’s CO2 Emission Changes, by Different Y02 Patent Categories

<table>
<thead>
<tr>
<th>Change of Scope 1 CO2 Emissions</th>
<th>(1) t+1 - t</th>
<th>(2) t+2 - t</th>
<th>(3) t+3 - t</th>
<th>(4) t+4 - t</th>
<th>(5) t+5 - t</th>
<th>(6) t+4 - t</th>
<th>(7) t+5 - t</th>
<th>(8) t+6 - t</th>
<th>(9) t+7 - t</th>
<th>(10) t+8 - t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions by Customer Firm</td>
<td>Total</td>
<td>Intensity</td>
<td>Total</td>
<td>Intensity</td>
<td>Total</td>
<td>Intensity</td>
<td>Total</td>
<td>Intensity</td>
<td>Total</td>
<td>Intensity</td>
</tr>
<tr>
<td></td>
<td>(1.302)</td>
<td>(1.829)</td>
<td>(1.764)</td>
<td>(2.055)</td>
<td>(2.903)</td>
<td>(3.277)</td>
<td>(4.535)</td>
<td>(4.862)</td>
<td>(4.457)</td>
<td>(5.198)</td>
</tr>
<tr>
<td>Y02D: ICT</td>
<td>0.452</td>
<td>0.088</td>
<td>-3.037*</td>
<td>-3.063*</td>
<td>-7.341**</td>
<td>-7.430**</td>
<td>-6.635</td>
<td>-5.386 - 8.761*</td>
<td>-8.873*</td>
<td>-8.948*</td>
</tr>
<tr>
<td></td>
<td>(1.193)</td>
<td>(1.239)</td>
<td>(1.821)</td>
<td>(1.781)</td>
<td>(3.031)</td>
<td>(3.074)</td>
<td>(4.065)</td>
<td>(3.966)</td>
<td>(5.263)</td>
<td>(4.833)</td>
</tr>
<tr>
<td></td>
<td>(1.542)</td>
<td>(1.613)</td>
<td>(2.159)</td>
<td>(2.245)</td>
<td>(2.649)</td>
<td>(3.136)</td>
<td>(2.849)</td>
<td>(3.146)</td>
<td>(3.201)</td>
<td>(3.866)</td>
</tr>
<tr>
<td>Y02P: Goods Production</td>
<td>-0.190</td>
<td>-0.136</td>
<td>2.446</td>
<td>1.985</td>
<td>-1.123</td>
<td>-2.636</td>
<td>-5.866</td>
<td>-6.747 - 8.573</td>
<td>-8.524</td>
<td>(8.256)</td>
</tr>
<tr>
<td></td>
<td>(1.489)</td>
<td>(1.482)</td>
<td>(2.291)</td>
<td>(2.175)</td>
<td>(4.273)</td>
<td>(3.662)</td>
<td>(6.546)</td>
<td>(5.840)</td>
<td>(8.256)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.011)</td>
<td>(0.707)</td>
<td>(1.859)</td>
<td>(1.502)</td>
<td>(2.691)</td>
<td>(1.810)</td>
<td>(3.639)</td>
<td>(2.480)</td>
<td>(3.906)</td>
<td>(3.374)</td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=4557447
Table A6. Climate Patents and Scope 3 Downstream Emissions

This table examines the relationship between firms’ climate patent ratio and their Scope 3 downstream CO2 emissions. The sample consists of all firm-year observations with non-missing Scope 3 downstream emissions data in both the Trucost and CRSP-Compustat datasets. The dependent variable in this analysis is the Scope 3 downstream emissions in the subsequent three years. To control for firm-specific characteristics, we include several firm controls such as firm size, Tobin’s Q, cash holdings, book leverage, return on assets (ROA), capital expenditure, sales growth, and property, plant, and equipment (PPE). To account for time-specific factors, all regressions incorporate firm and year fixed effects. Standard errors are clustered at the firm level to address potential heteroscedasticity. Statistical significance is indicated by *, **, and ***, representing significance at the 10%, 5%, and 1% levels, respectively.

<table>
<thead>
<tr>
<th>Scope 3 Downstream Emissions</th>
<th>(1) t+1</th>
<th>(2)</th>
<th>(3) t+2</th>
<th>(4)</th>
<th>(5) t+3</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Intensity</td>
<td>Total</td>
<td>Intensity</td>
<td>Total</td>
<td>Intensity</td>
</tr>
<tr>
<td>Climate Patent Ratio (Product)</td>
<td>1.785 (2.235)</td>
<td>2.139 (2.187)</td>
<td>3.169 (2.737)</td>
<td>2.627 (2.807)</td>
<td>-4.651** (2.235)</td>
<td>-5.016* (2.616)</td>
</tr>
<tr>
<td>Climate Patent Ratio (Process)</td>
<td>3.270 (2.474)</td>
<td>2.682 (2.460)</td>
<td>2.119 (2.385)</td>
<td>1.861 (2.397)</td>
<td>1.989 (1.819)</td>
<td>1.292 (1.927)</td>
</tr>
<tr>
<td>Num General Pat (Product)</td>
<td>8.567 (6.878)</td>
<td>9.289 (6.806)</td>
<td>-20.084** (7.790)</td>
<td>-17.299** (7.357)</td>
<td>3.283 (12.051)</td>
<td>1.827 (11.752)</td>
</tr>
<tr>
<td>Num General Pat (Process)</td>
<td>-10.204 (6.432)</td>
<td>-8.613 (6.180)</td>
<td>5.135 (7.810)</td>
<td>2.007 (7.099)</td>
<td>-11.225 (9.081)</td>
<td>-12.360 (8.797)</td>
</tr>
<tr>
<td>Firm F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Year F.E.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>7229</td>
<td>7097</td>
<td>5900</td>
<td>5788</td>
<td>4715</td>
<td>4624</td>
</tr>
<tr>
<td>adj. R^2</td>
<td>0.946</td>
<td>0.920</td>
<td>0.943</td>
<td>0.917</td>
<td>0.931</td>
<td>0.901</td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=4557447
Table A7. Robustness Check for Table 6 (Post-2010 Sample Only)

<table>
<thead>
<tr>
<th>Panel A: Split Customer Firms by Environmental Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Number of New Customer Firms (Attracted by the Supplier)</td>
</tr>
<tr>
<td>All Firms</td>
</tr>
<tr>
<td>Supplier's Climate Patent Ratio [t-1]</td>
</tr>
<tr>
<td>Firm Controls</td>
</tr>
<tr>
<td>Year F.E.</td>
</tr>
<tr>
<td>Industry F.E.</td>
</tr>
<tr>
<td>Num. Obs.</td>
</tr>
<tr>
<td>Adjusted R²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Split Customer Firms by Environmental Supply Chain (ESC) Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Number of New Customer Firms (Attracted by the Supplier)</td>
</tr>
<tr>
<td>All Firms</td>
</tr>
<tr>
<td>Supplier's Climate Patent Ratio [t-1]</td>
</tr>
<tr>
<td>Firm Controls</td>
</tr>
<tr>
<td>Year F.E.</td>
</tr>
<tr>
<td>Industry F.E.</td>
</tr>
<tr>
<td>Firm F.E.</td>
</tr>
<tr>
<td>Num. Obs.</td>
</tr>
<tr>
<td>Adjusted R²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel C: Split Customer Firms by GHG Emissions (Scope 1+2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Number of New Customer Firms (Attracted by the Supplier)</td>
</tr>
<tr>
<td>All Firms</td>
</tr>
<tr>
<td>Supplier's Climate Patent Ratio [t-1]</td>
</tr>
<tr>
<td>Firm Controls</td>
</tr>
<tr>
<td>Year F.E.</td>
</tr>
<tr>
<td>Industry F.E.</td>
</tr>
<tr>
<td>Firm F.E.</td>
</tr>
<tr>
<td>Num. Obs.</td>
</tr>
<tr>
<td>Adjusted R²</td>
</tr>
</tbody>
</table>
Table A8. Discrete Choice Model Regarding the Selection of Suppliers (Only New Suppliers)

This table estimates a McFadden discrete choice model of selecting potential suppliers by each customer firm. For each customer firm that has at least one supplier in a given year, the set of alternatives includes (i) those suppliers that are selected by the given customer firm and (ii) those suppliers with similar products that the given customer does not select. We use Hoberg and Phillips (2016)’s text-based network industry classification (TNIC) to obtain the second set of suppliers (not selected). The regression sample is at the level of customer × potential supplier × year. We use OLS to estimate the model. The dependent variable is a dummy equal to one if the customer firm chooses the supplier to establish the supply chain relationship in year \(t \). Climate Patent Ratio \([t-1]\) is measured for the supplier in year \(t-1 \). Environmental Score \([t]\) is the score of the customer. Customer (supplier) control variables include customer (supplier) firm size, Tobin’s Q, ROA, PPE and sales growth. Robust standard errors are clustered at the customer firm level. *, **, *** denote statistical significance at the 10%, 5% and 1% levels respectively.

<table>
<thead>
<tr>
<th></th>
<th>(1) d sc relation</th>
<th>(2) d sc relation</th>
<th>(3) d sc relation</th>
<th>(4) d sc relation</th>
<th>(5) d sc relation</th>
<th>(6) d sc relation</th>
<th>(7) d sc relation</th>
<th>(8) d sc relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1])</td>
<td>0.016***</td>
<td>0.012***</td>
<td>0.032**</td>
<td>-0.003</td>
<td>0.020</td>
<td>0.014***</td>
<td>-0.003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.015)</td>
<td>(0.004)</td>
<td>(0.013)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td>Supplier’s Num. General Patent ([t-1])</td>
<td>0.001***</td>
<td>0.001***</td>
<td>0.001***</td>
<td>-0.000</td>
<td>0.000</td>
<td>0.001***</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × Post 2010</td>
<td>0.019***</td>
<td></td>
<td></td>
<td>0.014***</td>
<td></td>
<td>-0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td></td>
<td></td>
<td>(0.004)</td>
<td></td>
<td>(0.004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × Before 2010</td>
<td>0.007</td>
<td></td>
<td></td>
<td>0.003</td>
<td></td>
<td>-0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
<td></td>
<td>(0.006)</td>
<td></td>
<td>(0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Num. General Patent ([t-1]) × Post 2010</td>
<td>0.001***</td>
<td></td>
<td></td>
<td>0.001***</td>
<td></td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td></td>
<td></td>
<td>(0.000)</td>
<td></td>
<td>(0.000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Num. General Patent ([t-1]) × Before 2010</td>
<td>0.001</td>
<td></td>
<td></td>
<td>0.001</td>
<td></td>
<td>-0.002**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td></td>
<td></td>
<td>(0.000)</td>
<td></td>
<td>(0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × Customer’s Environmental Score ([t])</td>
<td>0.009***</td>
<td>0.018***</td>
<td>0.006*</td>
<td>0.017***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.006)</td>
<td>(0.003)</td>
<td>(0.005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Num. General Patent ([t-1]) × Customer’s Environmental Score ([t])</td>
<td>-0.001***</td>
<td>-0.001***</td>
<td>-0.001***</td>
<td>-0.001***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × Customer’s Social Score ([t])</td>
<td>-0.010*</td>
<td></td>
<td>-0.014***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
<td>(0.005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × Customer’s Governance Score ([t])</td>
<td>-0.002</td>
<td></td>
<td>-0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td></td>
<td>(0.003)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × Customer’s Environmental Score ([t]) × Post 2010</td>
<td>0.010***</td>
<td></td>
<td></td>
<td>0.007*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td></td>
<td></td>
<td>(0.004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier’s Climate Patent Ratio ([t-1]) × Customer’s Environmental Score ([t]) × Before 2010</td>
<td>0.008</td>
<td></td>
<td></td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td></td>
<td></td>
<td>(0.005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Customer Firm Controls	Y	Y	Y	Y	Y	Y	Y	Y
Supplier Firm Controls	Y	Y	Y	Y	Y	Y	Y	Y
Year F.E.	Y	Y	Y	Y	Y	Y	Y	Y
Customer Firm F.E.	Y	Y	Y	Y	Y	Y	Y	Y
Supplier’s Industry F.E.	Y	Y	Y	Y	Y	Y	Y	Y
Supplier’s Firm F.E.	Y	Y	Y	Y	Y	Y	Y	Y

\(N = 647244 \) \(647244 \) \(647244 \) \(637968 \) \(647053 \) \(637778 \) \(647244 \) \(647053 \)

Adjusted \(R^2 \) \(0.044 \) \(0.044 \) \(0.044 \) \(0.044 \) \(0.159 \) \(0.160 \) \(0.044 \) \(0.159 \)

Electronic copy available at: https://ssrn.com/abstract=4557447