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Abstract

I exploit information in the cross section of bid-ask spreads to develop a new measure

of extreme event risk. Spreads embed tail risk information because liquidity providers

require compensation for the possibility of sharp changes in asset values. I show that

simple regressions relating spreads and trading volume to factor betas recover this in-

formation and deliver high-frequency tail risk estimates for common factors in stock

returns. My methodology disentangles �nancial and aggregate market risks during the

2007--2008 Financial Crisis; quanti�es jump risks associated with Federal Open Market

Committee announcements; and anticipates an extreme liquidity shock before the 2010

Flash Crash.
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I. Introduction

Fear of extreme events lies at the heart of �nancial markets. Although crashes are readily

identi�ed after the fact, anticipating extreme events remains a pressing challenge. The rarity of

extreme events makes forecasting them di�cult using standard dynamic techniques on historical

data. For this reason, existing approaches to risk assessment instead typically rely on options data

to extract market forecasts of extreme events. However, the rarity of liquid, deep out-of-the-money

options limits the estimation frequency and potential scope of these procedures. The objective of

this paper is to introduce a complementary methodology to overcome these limitations.

In this paper, I use the cross section of bid-ask spreads to develop a new, real-time measure

of extreme event risk. By drawing on high-frequency quote data for thousands of U.S. stocks, I

improve the resolution of tail-risk estimates from months to minutes and the set of potential factors

from those with liquid options to any factors that explain the cross section of realized stock returns.

More generally, I demonstrate that the behavior of market intermediaries o�ers a rich new resource

for understanding aggregate economic shocks and potential systemic threats.

Extreme market events take many forms, and the tail risks detected by my approach consist

primarily of sharp and sudden factor crashes or jumps. This set of anticipated risks encompasses

sharp factor price movements of several basis points, on the order of the median half-spread, to

extreme price jumps, realized, for example, during the Black Monday crash of October 19, 1987, or

during any of several market crashes at the height of the 2007�2008 Financial Crisis. These extreme

market movements jeopardize years of investment returns in minutes or hours, and they are endemic

to equity, currency, and commodity markets alike.

The market-making sector provides a natural setting for recovering high-frequency estimates of

anticipated risks.1 Liquidity providers set quotes to balance expected gains from intermediation

against potential losses from trading against better-informed market participants. One important

source of adverse selection derives from failing to adjust quotes immediately in response to informa-

1I use the term �market maker� to encompass all market liquidity providers rather than designated market makers
(DMMs) alone. Equity market makers di�er from traditional securities dealers in operating competitively in limit-
order markets, but the name continues to be used to describe modern liquidity providers. For example, Virtu
Financial, one of the world's largest liquidity providers, refers to itself as a market maker even for its non-DMM roles
(https://www.virtu.com/market-making).
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tion before another party trades against them. Large factor innovations are especially damaging to

market makers because such �picking-o�� losses may be realized in many securities simultaneously.

High-frequency liquidity providers harness extensive market data and advanced algorithms to man-

age this source of risk, and they continually revise their quotes in response to anticipated sudden

price changes. Prevailing quotes thus re�ect market-maker risk assessments on a near-instantaneous

basis for every exchange-traded security.2

My approach extracts tail risk estimates using this quote information for a large cross section of

stocks. The technique consists of a two-step regression approach in the style of Fama and MacBeth

(1973) regressions for estimating factor prices. The �rst step estimates risk exposures (betas) using

time-series regressions of stock returns on factor realizations. The second step estimates cross-

sectional regressions of a liquidity composite on factor betas from the �rst step. The coe�cients

from these cross-sectional regressions are tail risk estimates ξkt for factors k = 1, . . . ,K at date t.

The interpretation of ξkt derives from a simple model of competitive liquidity provision. All

else equal, liquidity providers quote larger spreads and fewer shares for high-beta securities to o�set

greater expected losses from being adversely selected on extreme factor moves. The di�erence in

spreads across securities with di�erent factor exposures increases with the anticipated size and

arrival rate of factor jumps, but only for jumps large enough to cause picking-o� losses by pushing

asset values outside the quoted best bid and o�er. At the same time, uninformed volume also varies

across stocks, and spreads can be high because this volume is low or because risk is high. Combining

these features, it follows that the cross-sectional slope of V h/d�a liquidity composite of volume

times spreads over depth�with respect to factor loadings relates to expected jump risk for each

factor at date t.3 I formalize this intuition in a model of high-frequency market making based on

Budish, Cramton, and Shim (2015).

To facilitate exposition, I assume in this example that picking-o� risk is the sole source of the

2Partly as a result of continual market-maker quote revisions, the ratio of order volume to trading volume typically
exceeds 30 for U.S. stocks and 500 for U.S. exchange-traded products (Market Information Data Analytics System,
http://www.sec.gov/marketstructure/datavis/ma_overview.html). Exchange-traded products are de�ned as CRSP
securities with share code 73 and primarily consist of exchange-traded funds.

3Spreads and volume are both essential ingredients of the liquidity composite. The Online Appendix considers
spreads and volume as separate dependent variables and shows that cross-sectional slopes are often negative, i.e.,
higher beta stocks have lower spreads.
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bid-ask spread. Inventory risk or non-jump adverse selection risk violates this assumption. For

individual assets, including factor-mimicking ETFs, separating out the component of the bid-ask

spread associated with tail risk at each date is di�cult or impossible. By contrast, cross-sectional tail

risk estimates are only contaminated by these other sources of the bid-ask spread if they line up with

factor betas. I verify empirically that such contamination does not occur. To rule out contamination

by inventory risk, I rerun my primary analysis using the adverse selection component of the bid-ask

spread in place of the e�ective spread under the identifying assumption that this component of the

spread is unrelated to inventory risk. To rule out contamination by non-jump adverse selection, I

include controls for a commonly used measure of �slow� adverse selection, the probability of informed

trading, or PIN (Easley and O'Hara (1992); Easley, Kiefer, O'Hara, and Paperman (1996)). Implied

market tail risks are nearly identical to the baseline speci�cation in both analyses.4

Importantly, my procedure recovers an expected cost of extreme realizations for each time interval

because bid-ask spreads re�ect liquidity providers' forward-looking information on tail risks. Hence

slopes estimated using the liquidity composite represent conditional factor risks directly�they do

not require time-series averaging as do risk premia estimates in standard Fama-MacBeth regressions

with realized returns as the dependent variable in the second stage. The recovered high-frequency

market tail risk series aligns well with measures of anticipated and realized jump tails. The cor-

relation with weekly left jump tail estimates from options data (Bollerslev and Todorov (2014))

exceeds 75%, and a one standard deviation increase in the jump tail measure is associated with

4.4 more realized medium-scale jumps per hour (t-statistic of 7.4). Importantly, my measure pre-

dicts near-term tail realizations controlling for other tail risk and volatility measures, including the

volume-synchronized probability of informed trading (VPIN) measure of Easley, López de Prado,

and O'Hara (2012).

The tail-risk measure serves as a real-time barometer of market risks across diverse and chal-

lenging economic environments. As a leading application, I analyze the May 6, 2010 Flash Crash as

a prototypical large and plausibly unexpected systematic jump. Existing tail risk estimation tech-

niques do not have su�cient resolution to anticipate the Flash Crash or to reliably detect changes

4The Online Appendix also con�rms that results do not change when evaluating the model on subsets of stocks
less subject to these risks.
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in perceived tail risk after the event. Consequently, regulators possessed little ability to intervene

until long after the event concluded because they lacked reliable tools for evaluating and responding

to near-term catastrophe risks.

My measure helps to �ll this gap by providing intraday assessments of tail risks. My tail risk

measure is a natural leading indicator for liquidity crashes because it draws on liquidity providers'

perceptions of extreme event risk. For the Flash Crash, market tail risk increases by several standard

deviations (relative to its value two days before) an hour before the Flash Crash begins, by 20

standard deviations in the quarter hour before the Flash Crash begins, and by a remarkable 96

standard deviations at the height of the event. By contrast, realized volatility and idiosyncratic

tail risk (corresponding with level changes in spreads) increase sharply only as the crash develops,

suggesting that market makers correctly anticipated a liquidity crisis in the market factor and

only later adjusted spreads to accommodate liquidity spillovers uncorrelated with the market-factor

liquidity shock.

Notably, the extreme tail risks detected around the Flash Crash are not the result of a high false-

positive rate. The only other occasions that register more than a 10-standard deviation increase in

tail risk also correspond with extreme market distress: unprecedented market interventions in the

wake of the collapse of Lehman Brothers (September 18, 2008); global stock market crashes in Asia,

Europe, and the U.S., including the worst-ever weekly drop in the S&P 500 (October 10, 2008); and

a large negative employment shock associated with the most new jobless claims since September 11,

2001 (November 13, 2008).

The Flash Crash also serves as an example of the dual uses of my measure. In addition to

utilizing it as a forward-looking indicator, I apply the tail risk measure retrospectively to assess

whether market makers register persistently elevated crash fears after the event. Both market

and idiosyncratic anticipated jump risks quickly revert to pre-Crash levels and are statistically

indistinguishable from the pre-Crash period by the following week. Despite regulatory agency

concerns that the Flash Crash might undermine market con�dence, the meltdown has only a short-

lived impact on market perceptions of the risk of extreme market liquidity events.

I next exploit the methodology's new intraday resolution to document the evolution of tail risks
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around major scheduled macroeconomic news. I show that anticipated jumps vary throughout

Federal Open Market Committee (FOMC) announcement days in regular patterns of decreased

tail risk (relative to non-announcement days) prior to the announcement, heightened tail risk in

the quarter hours before and containing the announcement, and slightly elevated tail risk after

the announcement. This �nding suggests that the pre-FOMC announcement drift documented by

Lucca and Moench (2015) and the anomalous performance of the CAPM documented by Savor and

Wilson (2013, 2014) cannot be rationalized by unobserved market jump risk without concurrent

time variation in risk premia.

Finally, I demonstrate that the methodology separately identi�es tail risks in a multifactor

setting, even when candidate factors are very highly correlated. For this purpose, I study the

coevolution of aggregate market and �nancial sector risks during the 2007�2008 Financial Crisis.5

Despite the Financial Select Sector SPDR ETF (XLF) having an cross-year average daily correlation

of 89% with the SPY over this period, cross-sectional di�erences in risk exposures are nonetheless

large enough to recover precise estimates for anticipated shocks speci�c to the �nancial sector. The

most extreme changes in the time series of �nancial sector tail risks often di�er from those of the

market jump series and correspond to major uncertainty innovations speci�c to �nancial �rms,

e.g., bank nationalization rumors and congressional votes on Fannie Mae and Freddie Mac rescue

packages. The methodology thus o�ers a unique and useful tool for understanding the 2007�2008

Financial Crisis and assessing ongoing sectoral risks. This application provides a novel link between

Brunnermeier and Pedersen (2009)'s concepts of market and funding liquidity by learning about fears

of extreme disruptions to banks and the �nancial sector from the behavior of market intermediaries.

II. Related Literature

A. Tail-Risk Measurement

The primary objective of this study is to develop a forward-looking measure of instantaneous

tail risk for a variety of return factors. Like Kelly and Jiang (2014), this paper takes a cross-

5I verify that the methodology also applies for traditional asset pricing factors such as �value� (HML) in the
Online Appendix.
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sectional approach to obtain conditional tail risk estimates. Kelly and Jiang (2014) show that the

aggregate market tail inherits individual asset tail dynamics if asset return tails follow a power

law. If tail realizations are not too infrequent, this cross-sectional approach can detect physical

market-factor tail shapes with short panels on the order of one month. My approach di�ers in two

key respects. First, my estimation strategy relies on bid-ask spreads rather than on tail return

realizations. Because every spread is informative at all times rather than only in the �rare event�

states associated with extreme returns, I signi�cantly increase the conditioning frequency at which

tail risk estimates can be constructed. Second, my measure recovers tail expectations, which jointly

summarize factors' ex ante tail position and shape, rather than the realized tail shape beyond a

time-varying threshold value. As an example of this distinction, Kelly and Jiang (2014)'s time-

varying tail threshold increases sharply during the 2007�2008 Financial Crisis, and the implied tail

shape looks no more extreme than during the preceding years as a result.

The two prevailing alternatives for tail risk measurement take advantage of options panels or of

high-frequency time series for individual securities. The most closely related work in this literature is

Bollerslev and Todorov (2014), which uses a cross section of S&P 500 index options to recover time-

varying jump tails. In so doing, the authors exploit the fact that di�erential exposure to jump risk

is the key source of variation in prices of close-to-maturity deep out-of-the-money options. Likewise,

this paper makes use of the insight that di�erential exposures to jump risk drive variation in the

size of (volume-adjusted) bid-ask spreads�themselves interpretable as prices of very short-dated

options (Copeland and Galai (1983))�across stocks with di�erent factor betas.

Bakshi, Kapadia, and Madan (2003) consider skewness and kurtosis for systematic and idiosyn-

cratic risks as implied by di�erential pricing of individual equity options. Bollerslev, Tauchen, and

Zhou (2009) estimate the variance risk premium in a model-free setup. Backus, Chernov, and Mar-

tin (2011) recover the distribution of implied consumption disasters from options data. Options

provide richer moneyness cross sections than bid-ask spreads, and for this reason, such options-

based analyses can identify a distribution of potential risks whereas my approach cannot. Bollerslev

and Todorov (2011a,b) supplement options analyses with high-frequency data and extreme value

in-�ll arguments to estimate jump tails for the aggregate market.
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My methodology complements these approaches. This paper adds the ability to estimate tail

risks (1) in the very near term, (2) for a broad set of factors, (3) with high-frequency conditioning,

and (4) under alternative sets of assumptions. Options-based approaches have di�culty assessing

near-term risks because option maturities are long relative to intraday or daily events,6 and many

options on individual names are too illiquid to be used for recovering non-market factor information.

Likewise, combining realized jumps with extreme value theory can recover only very slow-moving

variation in jump tails, and it is not yet applicable to candidate factors not directly traded in liquid

factor-mimicking securities (e.g., size, value, and momentum). Conversely, my approach is limited

in not being able to describe the full distribution of potential jump events or to gauge the persistence

of negative shocks in a forward-looking way.

B. Market Microstructure

The key relation between spreads and tail risks emerges from Budish, Cramton, and Shim

(2015)'s model of high-frequency market making in the presence of picking-o� risk. I augment

their model by imposing a factor structure on the jump process and by considering the resulting

cross section of spreads across multiple assets. Forerunners in developing this source of risk include

Copeland and Galai (1983), Harris and Schultz (1997), and Foucault, Röell, and Sandås (2003),

among others. Indeed, the equilibrium condition of Budish, Cramton, and Shim (2015) and this

study can also be motivated using the quotes-as-options framework of Copeland and Galai (1983).

Viewed from this perspective, bid-ask spreads naturally extend short-dated options to the near-

instantaneous expiration horizons that are especially well-suited for isolating jump risks (Bollerslev

and Todorov (2011b)).

Many other works investigate the information content of the limit order book. Of this set,

Foucault, Moinas, and Theissen (2007) is closest to this paper in showing that limit order books

contain volatility information in addition to directional information for returns, albeit for individual

assets.

This paper also shares the spirit of Nagel (2012) in relating returns to intermediation to forward-

6Even Carr and Wu (2003) �lter out options with time to maturity less than one week, and their important study
explicitly focuses on option price dynamics as time to maturity goes to zero.
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lookingmarket volatility. Speci�cally, Nagel (2012) shows that short-term reversal returns are highly

correlated with the VIX, and he interprets this relation as evidence that �nancially constrained

intermediaries are less able to provide liquidity in bad economic times. I derive a similar relationship

between intermediary behavior and the VIX with picking-o� risk as the central driver. When

anticipated jump risks�a component of the VIX�are greater, the required return to intermediation

is higher and the cross-sectional slope of bid-ask spreads with respect to factor exposures is steeper.

By contrast with time-varying tail risk, Nagel (2012)'s constrained-intermediary mechanism has less

bite at high frequencies or for non-market factors considered in this paper.

A key contribution of this work is to extend this intuition to a broad set of factor risks and show

that bid-ask spreads embed rich information about the underlying structure of asset returns. In

this sense, my paper also relates to the broad literature on common factors in liquidity and trading

volume (e.g., Chordia, Roll, and Subrahmanyam (2000), Lo and Wang (2000), Hasbrouck and Seppi

(2001), and Korajczyk and Sadka (2008)). Prior work such as Lo and Wang (2000), Hasbrouck and

Seppi (2001), and Cremers and Mei (2007) also recover common factors in volume and liquidity

measures, but these factors di�er from realized or excess return factors typically studied in the asset

pricing literature.

III. Spreads and Asset-Pricing Risks

A. Picking-O� Risks and Return Tails

To motivate my measure of factor tail risk, I build on the models of Copeland and Galai (1983)

and Budish, Cramton, and Shim (2015) (BCS). Liquidity consumers or �fundamental traders� (FT)

arrive at rate λFT , and in the aggregate, they pay liquidity providers the half-spread h multiplied

by their arrival rate per unit time. Information events arrive at rate λjump, and they shift the

fundamental value of a security by a stochastic value, J . When prices jump, fast arbitrageurs trade

at the old or �stale� quoted price if the size of the jump exceeds the half bid-ask spread, costing

the liquidity provider J − h. Liquidity providers' expected costs per unit time due to �fast� adverse

selection are thus the arrival rate of information events λjump multiplied by the expected price

jump conditional on the jump size exceeding the half spread h. Competitive intermediation drives
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expected pro�ts per unit time to zero, delivering the equilibrium condition of Budish, Cramton, and

Shim (2015):

λFT × h︸ ︷︷ ︸
E
[
bene�t/time

] = λjump × Pr (J > h)× E [J − h|J > h]︸ ︷︷ ︸
E
[
cost/time

] . (1)

Equation (1) relates anticipated price movements J to the half-spread h at each date t (both in

percent). Higher arrival rates of liquidity consumers drive spreads toward zero, whereas faster infor-

mation arrivals or larger jumps conditional on information arrivals increase h. Other determinants

of the spread such as inventory costs and non-jump adverse selection can be added on the right of

Equation (1), and I consider in detail the potential e�ects of these omitted terms in later sections.

I modify the BCS setup in two ways. First, I allow liquidity demand and liquidity supply to

exceed one share or futures contract. Denote the (stochastic) quantity demanded as q and the

quoted depth as d. For simplicity, I assume that queue positions are random from the perspective

of liquidity providers so that all units of liquidity o�ered have the same expected revenues and costs

per unit time.7 With this assumption, the equilibrium condition of Equation (1) generalizes to

λFT × h×
≡q∗︷ ︸︸ ︷

{E [q|q ≤ d]× Pr (q ≤ d) + d× Pr (q > d)} =

λjump × Pr (J > h)× E [J − h|J > h]× d. (2)

Liquidity providers at the best bid or o�er only intermediate for liquidity demands up to q = d.

Beyond that point, larger liquidity demands instead convert into resting limit orders or �walk the

book� to consume liquidity at higher prices (for which a di�erent equilibrium condition applies).

q∗ is then the expected liquidity consumed by fundamental traders at the best bid or o�er given a

trade and quoted depth d, and expected intermediation revenues scale with q∗ ≤ d. By contrast,

the expected cost of quoting more depth increases with d because well-capitalized arbitrageurs take

the entire o�ered depth when given the (arbitrage) opportunity.

7In high-frequency settings, continual churn in the limit order book makes position order di�cult to track (Yueshen
(2014)).
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Second, I relate market maker liquidity provision to the factor structure in jump returns. Factor

structures in jumps have strong empirical support and are the basis for an active literature on jump

regressions (e.g., Todorov and Bollerslev (2010), Li, Todorov, and Tauchen (2017), and Bollerslev,

Li, and Todorov (2016)). I decompose factor and idiosyncratic jumps in an asset's fundamental

value as

rd =
∑
k

βkr
d
k + r̃d, (3)

for a set of return factors k and idiosyncratic jump return r̃d. I make three simplifying assumptions

on the jump processes to facilitate taking the adapted model to the data:

Assumption 1. Jump arrivals are independent both among factors and between factors and id-

iosyncratic discontinuous returns.

Assumption 2. Idiosyncratic jumps are distributed i.i.d. across assets.

Assumption 3. The distribution of jumps for each factor is symmetric.

These assumptions streamline the construction of the tail risk measure but are otherwise inessen-

tial. Assumption 1 excludes co-jumps and more complex jump dependencies among factors. Whether

excluding co-jumps is reasonable depends on whether the considered return factors are plausibly

orthogonal to one another. Relaxing this assumption to allow for co-jumps is readily accommodated

by adding cross terms to each cross-sectional estimation, as described in Appendix A. Assumption

2 excludes heterogeneity in the rate of idiosyncratic information arrival among assets. This as-

sumption, too, may be relaxed (as in the Online Appendix), for example by estimating security

loadings on the common factor in idiosyncratic volatility��CIV� of Herskovic, Kelly, Lustig, and

Nieuwerburgh (2016)�under the assumption that such factor loadings extend also to idiosyncratic

jumps. In empirical work, I assume symmetry of jumps (assumption 3) because the distribution of

realized jumps for individual stocks and the SPY and XLF ETFs is very close to symmetric.8 In the

Online Appendix, I estimate up- and down-jump risks separately and con�rm that jump risks also

8Jumps detected using Lee and Mykland (2008) and Bollerslev, Todorov, and Li (2013) methodologies share this
symmetry property, and Table III of Bollerslev and Todorov (2011b) also �nds a one-factor structure for the objective
probabilities of left- and right-jump tails.
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are symmetric in normal times, but that symmetry between up- and down-jump risk deteriorates

around the most extreme events such as the 2010 Flash Crash.

Under these assumptions, I combine Equations (2) and (3) to obtain

(λFT q
∗ + λjumpd)︸ ︷︷ ︸
≡V̄

h

d
=
∑
k

λkE
[
rdk|rdk > h̄k

]
︸ ︷︷ ︸

≡ξk

|βk|+ λ̃E
[
r̃d|r̃d > h̄

]
︸ ︷︷ ︸

≡ξ̃

. (4)

Appendix A derives this expression. The left-hand side of Equation (4) represents a liquidity

composite of normalized half-spreads h/d and expected volume, the trade-size weighted arrival rate

of both trader types V̄ = λFT q
∗ + λjumpd. The coe�cient on each βk, λkE

[
rk|rk > h̄k

]
or ξk,

represents the tail risk for factor k. Faster event arrival rates or more damaging potential events

must be compensated in equilibrium by higher anticipated trading revenues V̄ h.

Equation (4) holds for each asset in isolation. It also holds for individual securities as part of

a multi-asset liquidity provision strategy because picking-o� risks are additive and do not interact

across securities. To see why, consider two securities with the same factor exposures and idiosyn-

cratic tail risk. Losses to the market maker in the �rst security are mirrored by losses in the second

security, and su�ciently large jump events damage the market maker in each market independently.

Now suppose that the risk loadings of the second security were �ipped, that is, β1k = −β2k for all

k. Holding depth equal, the same events that trigger arbitrageur buys (sales) in the �rst security

also trigger arbitrageur sales (buys) in the second security. Despite o�setting factor exposures,

potential stale-quote costs double. Intermediation costs for multiple securities are the sum of costs

for individual securities (setting aside �xed costs).9 Because cross-subsidies cannot occur with free

entry into liquidity provision, Equation (4) must hold for each asset independently.

B. Cross-Sectional Recovery of Tail Risks

Estimating tail risks from Equation (4) takes place in two stages. First, the econometrician

computes betas with respect to candidate realized return factors. I estimate backward-looking,

9Equivalently we can view liquidity provision in a single asset as being short a strangle with strike prices +h and
−h. Liquidity provision in multiple assets entails holding a portfolio of short strangles in di�erent assets. These
option payo�s are additive, and hence, the costs of liquidity provision also add.
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rolling annual betas using daily returns rit on candidate factor realizations fkt for each stock in the

�ltered sample i:

rit = αi +
∑
k

β
(t)
ik fkt + εit, ∀i. (5)

Armed with these betas, I estimate (symmetric) tail risks cross-sectionally across stock-level obser-

vations via least absolute deviations regression:

(
V h

d

)
it

= ξ̃t +
∑
k

ξtk |βik|+ δit. (6)

For much of the ensuing analysis, all variables (and products of variables, where appropriate) are

hourly averages over the respective time interval. d is the bid and o�er depth summed across

exchanges in shares. V is realized volume divided by two to account for half of volume being buys

or sells, on average. I treat realized volume as an unbiased, but noisy proxy for the volume expected

by liquidity providers. h is the e�ective half-spread. δit is a stock-speci�c error term for date t. ξtk

represents the average anticipated jump risk over the interval for factor k. The time �xed e�ect

ξ̃t controls for common movements in asset-level tail risk not associated with the market factor

or other return factors. In applications I assume that factor loadings estimated from daily data

over the prior year apply to high-frequency data for the subsequent trading day; to the extent that

this assumption is not met, ξs will be estimated with error, and I am less likely to �nd signi�cant

relations between tail realizations and my tail-risk measure in the subsequent analyses.

Equations (5) and (6) resemble Fama-MacBeth regressions for determining prices of factor risk.

They di�er in that all ξt estimates are of independent interest rather than only inputs into a single

time-series average value. Equation (6) recovers market maker expectations directly, whereas the

second stage of traditional Fama-MacBeth regressions recovers only very noisy realizations around

a factor's date-t expected value. For this reason the precision of tail-risk estimates depends on the

size of the cross-section rather than the length of the time series.

Equation (6) also clari�es the conditions under which we can interpret ξtk as the tail risk at

time t. From the perspective of omitted-variable bias, a variable correlated with the liquidity

composite and factor betas has the potential to contaminate ξtk. Candidate omitted variables can
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take the form of traditional microstructure sources of the bid-ask spread, such as inventory risk

and non-jump adverse selection, as well as omitted high-frequency return factors. As in standard

asset-pricing applications, the recovered coe�cients ξ are a price of exposure to the projection of

the full set of risks on the factors speci�ed in the time-series regression. I consider and rule out

contamination by inventory risk and non-jump adverse selection in Section V.B, and I speak to

other potential omitted factors in Section V.C.

For estimation, I use median regression rather than OLS in the second-stage regressions because

occasional the liquidity composite V h/d occasionally takes extreme values caused by data recording

errors and idiosyncratic departures from the model. OLS regression places too much weight on �tting

this small number of in�uential points with extreme volumes or spreads, whereas median regression

is more robust to such outliers. A drawback to this robust-regression approach is that median

regression complicates the problem of using estimated rather than known betas from the �rst-stage

regressions. Direct corrections to standard errors (as in Shanken (1992)) are unavailable for this

hybrid approach, and the discontinuous moment conditions associated with median regression make

GMM numerically intractable.

For this reason, I compute standard errors via pair bootstrap to resolve the generated-regressors

problem. The bootstrap enables straightforward construction of standard errors in settings with

complicated dependence across regression stages and calendar time, including quantile-regression

settings (see, e.g., Section 3.9 of Koenker (2005)). This procedure �rst uses the full sample of

stocks and 252 rolling trading days to obtain point estimates for ξtk. Then, for each replication

r = 1, . . . , R, I construct resampled coe�cient estimates ξ
(r)
tk as follows:

1. For each stock i = 1, . . . , N , draw with replacement 12 strings of 21 trading days during the

252 trading days preceding date t;

2. Estimate β
(r)
ik for all stocks i using Equation (5);

3. For each time interval on date t, draw N stocks with replacement from the set of N stocks;

4. Estimate ξ
(r)
tk using Equation (6) on the N randomly chosen stocks.

Con�dence intervals for ξtk are constructed directly from quantiles of ξ
(1)
tk , . . . , ξ

(R)
tk for R = 1000
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resamples. I use strings of 21 trading days as bootstrap blocks to account for potential serial

correlation in errors in Equation (5). The bootstrap hence simultaneously accounts for uncertainty

in betas by resampling over time and in tail risk estimates by resampling over stocks and their

generated betas.

IV. Data

The primary data sources for this study are the Center for Research in Security Prices (CRSP)

U.S. Stock Database and the New York Stock Exchange Trade and Quote (TAQ) data. CRSP

provides security attribute data (e.g., share codes), unique ticker-entity mappings, and daily shares

outstanding for each security. The TAQ data aggregate orders from all Consolidated Tape Associ-

ation exchanges and are timestamped to the second. Traded volume over each interval is directly

observed. I follow Holden and Jacobsen (2014) to obtain cleaned e�ective spreads and market depths

from the underlying TAQ data. I add average liquidity rebates to e�ective half-spreads to obtain

the gross-of-fees bene�t of liquidity provision that accrues to market makers. I assume that rebates

are roughly constant across stocks (i.e., that Tape A vs. B vs. C di�erences are small) and equal

to 22 cents per 100 shares. This average rebate size is found in the present-day NYSE price list for

the most active liquidity providers (Tier 1; https://www.nyse.com/markets/nyse/trading-info), in

Table 1 of the maker-taker analysis of Foucault, Kadan, and Kandel (2013) (who in turn reference

a 2009 industry publication), as well as in a recent comprehensive study of maker-taker fees as the

average value for active liquidity providers from January 2008 through December 2010 (Cardella,

Hao, and Kalcheva (2017)).10 In addition to CRSP and TAQ, I obtain historical intraday Chicago

Board Options Exchange Volatility Index (VIX) data from Pi Trading.

The main data sample consists of all common stocks (CRSP share code = 10 or 11) in the TAQ

database from January 2005 to December 2013. Although the TAQ database starts in 1993, three

features of this early data complicate analysis. First, the assumptions of continually updated spreads

10Reasonable alternatives for the level of the rebate have minimal e�ect on results. For example, reducing the
rebate adjustment from $0.22 per hundred shares to $0.00 maintains the same shape in the time series of jumps while
shifting the recovered idiosyncratic tail risk down slightly. Because rebates are not set as a function of risk attributes,
rebate measurement errors should be uncorrelated with asset betas, and in turn, rebate mismeasurement should have
little e�ect on factor tail risk estimates.
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and minimal order processing costs are not plausible until algorithmic-trading and connectivity

innovations in the mid-2000s. Second, the key zero-expected pro�t condition of Equation (1) likely

does not apply to specialist or collusive market making characterizing earlier years (Christie and

Schultz (1994)). By contrast, free entry is a critical dimension by which algorithmic market making

di�ers from specialist market making (Hendershott, Jones, and Menkveld (2011)). Free entry not

only makes the break-even condition more likely to hold through competition, but it also encourages

the collection of new signals by liquidity providers. More sophisticated market makers sharpen

the adverse selection faced by less-informed intermediaries because the latter group becomes the

marginal liquidity providers exactly when order �ow is most unfavorable (Han, Khapko, and Kyle

(2014)). Third, the in�ux of opportunistic liquidity providers in the 2000s likewise alleviates the

collective capital constraints faced by market intermediaries. Consequently, inventory risk is less

likely to be a key factor in determining liquidity prices than for the NYSE specialists studied

by Comerton-Forde, Hendershott, Jones, Moulton, and Seasholes (2010). Notwithstanding these

concerns, I also consider 2004 in summary plots to illustrate the potential breakdowns of my measure

for pre-HFT liquidity provision.

I restrict the sample to exclude the 15 minutes after market open and before market close. These

periods are characterized by unusual trader composition and informational events, such as elevated

informed trading activity at market open in response to overnight events. For much of my analysis,

I split the remainder of the trading day into six hourly bins for 9:45�10:45am through 2:45�3:45pm.

The �ltered sample consists of roughly 2,800 stocks for each hour of each trading day from 2004 to

2013. Additional data cleaning and �ltering details are provided in Appendix B.

V. Results

My empirical analysis proceeds in two parts. In the �rst part, I recover hourly tail risk estimates

for a one-factor market model and compare these estimates to market tail realizations and to

alternative near-term forecasts such as the VIX. In the second part (Section VI), I apply the tail

risk extraction methodology to verify the performance of the jump tail measure for the 2010 Flash

Crash, major macroeconomic news events, and the 2007�2008 Financial Crisis. This last example
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Figure I: Hourly Market Tail Risks, 2004�2013
This �gure plots rolling 10-day means of hourly cross-sectional slope estimates ξtm (solid blue line) for Equation
(6) for each trading date in 2004�2013. Dotted bands depict the corresponding 95% con�dence intervals estimated
by pairs bootstrap. Realized volatility (dashed red series) is estimated using minutely squared returns on the SPY
and scaled to the hourly frequency. The VIX is plotted using the right axis and `x'-markers for comparison. NBER
recession dates are shaded gray.

demonstrates the power of the two-stage procedure for separately identifying factor tail risks in a

multifactor setting.

Figures I and II plot recovered market tail risks by hour over the 2004 to 2013 sample period.

Figure I plots 10-day rolling means of ξMKT to emphasize low-frequency variation in tail risk.

Reassuringly, spread-implied jump risk spikes relative to realized volatility during the �nancial

crisis and global recession, a time of heightened extreme-event risk. Con�dence intervals are tight

enough to ensure that market tail risk is statistically distinguishable from zero throughout the

sample. This feature re�ects the value of exploiting large cross sections for identifying conditional

risks.

Figure II illustrates my measure's ability to capture market news in real time. I mark the �fteen

largest changes in implied market risks over the preceding 24 hours with black Xs, separating peaks
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Figure II: Largest Increases in Tail Risk, 2004�2013
This �gure plots hourly estimated market tail risks in a one-factor market model. The �fteen largest increases in tail
risks within a one-month window are overlaid with a black `X.' Changes are measured as the tail risk at date t and
hour h less the tail risk at date t − 1 and hour h. The table below o�ers a brief description of coincident events on
tail-risk news days. Standardized values divide by the full time-series standard deviation of changes. Bolded events
coincide with the most extreme increases in the VIX within 24 hours. Implied market tails on October 10, 2008 are
truncated for visual clarity.
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16-Aug-2007 14:15

18-Sep-2007 14:15

31-Oct-2007 14:15

11-Dec-2007 14:15

22-Jan-2008 10:15

14-Mar-2008 10:15

18-Sep-2008 15:15

10-Oct-2008 15:15

28-Oct-2008 15:15

13-Nov-2008 14:15

16-Dec-2008 15:15

15-Jan-2009 14:15

06-May-2010 15:15

05-Aug-2011 10:15

22-Sep-2011 10:15

VIX

Date Value Event

16-Aug-07 14:15 7.24 Fed approves changes to its primary credit discount window

facility

18-Sep-07 14:15 6.65 FOMC lowers Fed funds target 50bps to 4.75%
31-Oct-07 14:15 5.65 FOMC lowers Fed funds target 25bps to 4.5%
11-Dec-07 14:15 4.75 FOMC lowers Fed funds target 25bps to 4.25%
22-Jan-08 10:15 9.63 FOMC lowers Fed funds target 75bps to 3.5%

14-Mar-08 10:15 5.61 New York Fed drops deal to save Bear Stearns
18-Sep-08 15:15 11.96 SEC short-selling ban; global campaign by central banks; Paulson

briefs Congress on TARP

10-Oct-08 15:15 24.80 Stock market crashes in Asia, Europe, and the U.S.

28-Oct-08 15:15 8.92 First round of TARP bank bailouts ($115B)
13-Nov-08 14:15 11.79 Large negative jobless claims surprise; most new claims since September 11,

2001
16-Dec-08 15:15 6.24 FOMC lowers Fed funds target to 0-0.25%
15-Jan-09 14:15 5.28 Senate approves release of $350 billion of TARP funds
6-May-10 15:15 17.44 2010 Flash Crash

5-Aug-11 10:15 6.19 S&P downgrades U.S. credit rating to AA+
22-Sep-11 10:15 4.17 Stock markets plunge after Fed warns of �signi�cant downside

risks� to growth
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by a minimum distance of 10 trading days to isolate distinct events. The largest shocks to market tail

risk consist primarily of major macroeconomic news and Federal Reserve policy changes. Scheduled

and surprise events are captured �in progress��for example, the 1:45�2:45pm window captures the

typical timing of FOMC announcements, and the 2:45�3:45pm window on May 6, 2010 captures the

Flash Crash.

Figure III indicates that the tail risk measure also captures well-known intraday patterns in

volatility and jump risks (e.g., Andersen and Bollerslev (1997), Bollerslev and Todorov (2011b)).

Both plots rank 2008�2009 as the most extreme years and 2005 as the least extreme year for

expected jumps (left) and realized jumps (right). As with volatility, the pronounced skewed-U

pattern manifests in tail risks for each year of the sample.

Although the tail risk measure matches the shape of intraday patterns, the magnitude disagrees

with previous work. Comparing panels of Figure III, the anticipated tail risk measure implies roughly

100 times as much discontinuous variation as is realized in medium-scale jumps. For example, the

opening hours of 2008 and 2009 average 3.15 and 2.13 percent anticipated jump variation per side

against 2.92 and 2.11 basis points of realized jump variation per side.

This di�erence in magnitude has several potential causes. First, the tail risk measure captures

the entire distribution of anticipated jumps larger than a few basis points. Frequent small jumps

in�ate the measure relative to realized medium-scale jump variation. Second, market intermediaries

may be risk averse. In that case, the risk-neutral, zero-expected pro�t condition of Equation (1)

omits a potentially large scaling term on picking-o� costs, which in equilibrium, equates to greater

bid-ask spreads or smaller quoted depth scaled in proportion to jump exposures. Third, other

sources of the bid-ask spread may contaminate my measure. Section V.B addresses this possibility

in depth. For all these reasons, subsequent analyses only consider the tail-risk measure up to scale.

Relation to Other Tail Risk and Volatility Measures

Table I relates my spread-implied tail risk measure to four other tail risk and volatility measures

proposed in the literature: options-implied tail risks from Bollerslev and Todorov (2014); the VIX;

hourly realized volatility; and the volume-synchronized probability of informed trading (VPIN) for
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Figure III: Intraday Jumps by Hour, 2004�2013
This �gure plots hourly means of market tail risks by hour and year (top) and of weighted realized basis point jumps
by hour and year (bottom). Realized basis point jumps are a weighted sum of the number of events in which the
minutely return exceeds 5, 10, 25, and 100 basis points, with respective weights of 5, 10, 25, and 100. The total jump
variation is then divided by two to re�ect average positive- and negative-jump variation.
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Table I: Correlations of Tail Measure with Other Volatility and Tail Measures
This table reports correlations of tail and volatility measures over the 2004�2013 sample period. The spread-implied
measure ξMKT uses Equation (6) to compute hourly market tail risk estimates. VIX is the (30-day) CBOE Volatility
Index. Realized volatility is the square root of the average squared one-minute SPY returns within each hour.
Options-implied tails (O-I Tail) are the weekly parametric left-tail risk estimates from Figure 7 of Bollerslev and
Todorov (2014). VPIN uses bulk-volume classi�cation and volume bars (10 buckets) for the front-month E-mini S&P
500 futures contract. These two series are available through 2011 only. Daily and weekly values are equal-weighted
hourly values within the respective time bin.

Weekly Correlations

ξMKT O-I Tail VIX Realized Vol. VPIN

ξMKT � 0.75 0.83 0.83 0.82

O-I Tail 0.75 � 0.89 0.75 0.65

VIX 0.83 0.89 � 0.86 0.79

Realized Vol. 0.83 0.75 0.86 � 0.74

VPIN 0.82 0.65 0.79 0.74 �

Daily Correlations

ξMKT VIX Realized Vol. VPIN

ξMKT � 0.76 0.62 0.75

VIX 0.76 � 0.66 0.75

Realized Vol. 0.62 0.66 � 0.57

VPIN 0.75 0.75 0.57 �

Hourly Correlations

ξMKT VIX Realized Vol. VPIN

ξMKT � 0.65 0.43 0.65

VIX 0.65 � 0.52 0.74

Realized Vol. 0.43 0.52 � 0.45

VPIN 0.65 0.74 0.45 �
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E-mini S&P 500 futures.11 Daily and weekly values are equal-weighted averaged hourly values

within each respective time bin.

All volatility and tail risk measures are highly correlated at the daily and weekly frequencies.

Relative to the options-implied tails, my spread-implied tails are more similar to realized volatility

and VPIN and less similar to the VIX. This relationship is expected in that the spread-based

measure draws on short-horizon market maker expectations of extreme-event risks, whereas the

options-implied measure re�ects the long-horizon information embedded in options with more than

a week to expiration. Focusing on a competing high-frequency extreme-event risk measure, VPIN

is highly correlated with my measure on the weekly horizon, and it becomes less correlated as

frequency increases (in tandem with the VIX). I show in Section V.A that this imperfect correlation

is associated with the di�erent measures picking up distinct signals for explaining and forecasting

jump realizations.

A. Empirical Tests

The key veri�cation regression takes the following form for the market factor (and is later

repeated for a �nancial sector proxy in Section VI.C):

tail_realizationt = α+ βξt−∆,MKT + γV IXt−∆ + δCVt−∆ +

ζV PINt−∆ + α−1tail_realizationt−1 +

β−1ξt−1−∆,MKT + γ−1V IXt−1−∆ +

δ−1CVt−1−∆ + ζ−1V PINt−1−∆ + εt. (7)

I measure tail realizations in units of spreads and basis points and in event counts and event sums

(weighting by event size). Given spread-implied tail risk's strong comovement with other forward-

looking variation measures, e.g., the VIX, I include the VIX as a control to ensure that the tail

measure indeed has additional explanatory power for tail events. I also include total continuous

11VPIN has been updated since its inception in Easley, López de Prado, and O'Hara (2012). I use bulk volume
classi�cation with wide volume bars (10 buckets) as suggested by the classi�cation accuracy tests of Easley, de Prado,
and O'Hara (2016). See Andersen and Bondarenko (2015) for additional discussion of several variants of VPIN.
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variation CV to isolate the contribution of the tail risk measure to explaining jumps rather than

continuous variation. CV is de�ned as the sum of squared minutely price movements smaller than

2.5 standard deviations of minutely price movements adjusted for time-of-day e�ects within each

year (following the continuous and jump variation decomposition of Mancini (2009), among others,

and Bollerslev, Todorov, and Li (2013)'s methodology speci�cally).12 Realized continuous variation

comoves very strongly with jump variation, so including it as a control presents a particularly strong

test of the interpretation of the recovered coe�cients as an estimate of anticipated jump tails.

Finally, I include the latest bulk-volume classi�ed VPIN measure to distinguish the information

content of my tail risk measure from a leading alternative.

The tail realization measures used in the regression are as follows. Basis-point jumps count the

number of events in which the minutely midpoint return exceeds 10 basis points, my implicit �large

jump� threshold. The jump sum is a weighted count of the number of events in which the minutely

return exceeds 5, 10, 25, and 100 basis points, with respective weights of 5, 10, 25, and 100. Spread

jumps count the number of occasions in which the minutely return exceeds 5 quoted half-spreads.

Because bid-ask spreads widen with volatility, this count measure mechanically provides a partial

control for time-varying volatility. The corresponding jump sum measure is a weighted count of

the number of events in which the minutely return exceeds 1, 5, 10, and 25 half-spreads, with

concomitant weights of 1, 5, 10, and 25.

I use relatively simple measures of realized tail events for two reasons. First, large price move-

ments generate picking-o� opportunities regardless of the underlying volatility environment so long

as they move the asset's �latent price� outside of the spread within a very short time period. The

model does not distinguish between rare, truly discontinuous price movements and extremely rapid

continuous ones associated with high local volatility.13 Both harm liquidity providers as other

market participants pick o� stale quotes. Second, extreme market movements are quite rare, and

including moderately large market movements dramatically increases the number of non-zero obser-

12I consider two alternative measures of continuous variation in the Online Appendix. Coe�cient estimates on
ξMKT are robust to the way CV is constructed.

13Large basis point and spread movements typically include the infrequent jumps captured by formal jump detection
techniques (e.g., Lee and Mykland (2008) and Bollerslev, Todorov, and Li (2013)), but they also include more frequent
medium-scale price movements that may not register as jumps in high volatility environments.
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vations for the dependent variable. The weighted count measures in particular strike a compromise

by including moderately extreme events and upweighting truly extreme factor realizations.

I run the regression of Equation (7) for two horizons. First, I run the contemporaneous regression

with ∆ = 0. This regression should have high explanatory power if the model is true because market

makers adjust their quotes nearly every instant to re�ect anticipated risks. In this speci�cation,

the recovered tail-risk measure ξt,MKT has the interpretation of the within-hour average anticipated

jump risk. Second, I implement a true forecasting regression with ∆ = 1. This speci�cation tests

whether the lagged tail risk measure predicts future tail realizations over the next hour. Recognizing

that jump intensities and volatility are persistent, I add lagged tail realizations and explanatory

variables in both speci�cations. These additions challenge the tail-risk measure because the sizable

persistence in volatility and jump risks is di�erenced out. Throughout I drop observations with lags

using information from the last hour of the preceding trading day, though results are robust to this

choice.

The �rst panel of Table II presents results from the baseline test of contemporaneous forecast

jump tails on realized jumps. I normalize ξMKT and VPIN by dividing by their standard deviations

to facilitate interpretation of coe�cients (for comparison, the standard deviation of the VIX in this

period is 10.3). For all tail realization measures, an elevated market tail measure coincides with

an increase in the number of realized jumps within the hour, and the coe�cients are statistically

signi�cant and economically large.14 For example, a one standard deviation increase in the market

jump tail risk is associated with 4.4 additional realized basis-point jumps per trading hour and 70.9

additional weighted jumps (the measure captures both intensity and size). The coe�cient on the

jump-tail measure is only slightly reduced when adding the VIX as a control, and they are both

associated with near-term jumps. The coe�cient on continuous variation is inconsistent or driven

out by the jump tail risk measure; by contrast, the jump-tail estimates perform well in explaining

the residual variation in realized jumps, which supports its interpretation as a measure of extreme

event risk rather than of contemporaneous or anticipated volatility. In most speci�cations, including

14Standard errors are robust to heteroskedasticity (both panels) and serial correlation of up to 126 trading hours.
Adding hour-year �xed e�ects has minimal impact on point estimates or their statistical signi�cance. Results are also
not driven by extreme observations by recomputing both tables by taking logs of one plus the dependent variable.
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Table II: Contemporaneous and Predictive Regressions for Jump Realizations
This table presents results from regressions of realized jumps against estimated tail risks,

tail_realizationt = α+ βξt−∆,MKT + γV IXt−∆ + δCVt−∆ + ζV PINt−∆ +

α−1tail_realizationt−1 + β−1ξt−1−∆,MKT +

γ−1V IXt−1−∆ + δ−1CVt−1−∆ + ζ−1V PINt−1−∆ + εt,

where ∆ = 0 and ∆ = 1 correspond to the �rst and second subtables, respectively. Tail realizations are measured
in counts of minutely returns exceeding basis point or spread thresholds. The count variable sums jumps exceeding
10 basis points or 5 half-spreads, and the sum variables are a weighted sum of jump sizes exceeding 5, 10, 25, and
100 basis points or 1, 5, 10, or 25 half-spreads. Continuous variation is estimated by hour with a 2.5 standard
deviation threshold on minutely price movements. VPIN is constructed using bulk-volume classi�cation with volume
bins on front-month E-mini S&P 500 futures. Regressions consist of hourly observations for the 2005�2013 sample
in the baseline speci�cation and for 2005-2011 where VPIN is included. Standard errors are HAC with monthly (126
observation) bandwidth. ξt,MKT and VPIN are normalized by their standard deviations in both panels. t-statistics
are in parentheses.

SPY Basis-Point Jumps

Jump Count Jump Sum

ξMKT 4.41∗∗∗ 4.03∗∗∗ 3.91∗∗∗ 70.89∗∗∗ 64.78∗∗∗ 57.30∗∗∗

(7.39) (7.32) (11.56) (9.82) (10.24) (13.44)

V IX 0.84∗∗∗ 0.82∗∗∗ 14.27∗∗∗ 13.72∗∗∗

(5.37) (5.11) (9.89) (8.41)

CV -0.57 10.56

(-0.36) (0.58)

V PIN 0.97∗∗∗ 25.31∗∗∗

(2.69) (8.46)

Obs. 11280 11280 6398 11280 11280 6398

R2 0.86 0.87 0.88 0.89 0.91 0.91

SPY Spread Jumps

Jump Count Jump Sum

ξMKT 6.29∗∗∗ 5.42∗∗∗ 5.74∗∗∗ 59.43∗∗∗ 54.83∗∗∗ 51.74∗∗∗

(4.72) (4.24) (6.54) (7.57) (7.16) (10.24)

V IX 1.64∗∗∗ 1.32∗∗∗ 11.95∗∗∗ 10.01∗∗∗

(7.36) (4.84) (7.77) (5.88)

CV -4.21∗∗∗ -7.47

(-3.63) (-0.52)

V PIN 4.63∗∗∗ 27.70∗∗∗

(6.32) (6.32)

Obs. 11280 11280 6398 11280 11280 6398

R2 0.77 0.78 0.82 0.84 0.85 0.87

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗p < 0.1
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Table II: Contemporaneous and Predictive Regressions for Jump Realizations (Cont.)

SPY Basis-Point Jumps

Jump Count Jump Sum

ξMKT 6.39∗∗∗ 5.14∗∗∗ 3.25∗∗∗ 100.34∗∗∗ 79.52∗∗∗ 48.76∗∗∗

(11.75) (11.54) (6.27) (12.36) (12.28) (5.92)

V IX 1.01∗∗∗ 0.92∗∗∗ 17.54∗∗∗ 15.85∗∗∗

(6.62) (4.73) (8.21) (5.55)

CV 7.53∗∗ 110.02∗∗∗

(2.35) (3.41)

V PIN 0.63 22.90∗∗∗

(0.99) (2.99)

Obs. 9016 9016 5114 9016 9016 5114

R2 0.73 0.76 0.80 0.77 0.80 0.83

SPY Spread Jumps

Jump Count Jump Sum

ξMKT 10.41∗∗∗ 7.84∗∗∗ 6.42∗∗∗ 88.34∗∗∗ 70.98∗∗∗ 51.04∗∗∗

(6.91) (5.35) (5.20) (10.24) (8.31) (5.60)

V IX 1.70∗∗∗ 1.36∗∗∗ 15.21∗∗∗ 12.59∗∗∗

(7.21) (4.66) (9.54) (6.05)

CV -0.70 50.83∗∗

(-0.27) (2.18)

V PIN 5.01∗∗∗ 26.08∗∗∗

(8.18) (4.91)

Obs. 9016 9016 5114 9016 9016 5114

R2 0.62 0.66 0.72 0.68 0.71 0.76

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗p < 0.1
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volume-bar VPIN attenuates the explanatory power of ξMKT only slightly, although both variables

explain substantial variation in realized jumps. The second panel of Table II presents analogous

results for forecasting using lagged tail risk measures. All speci�cations indicate comparably strong

predictability of market jump realizations for the hour ahead.

These tests con�rm the suggestive evidence of Figures I�III. The market tail risk measure is

associated with both low- and high-frequency realized jump risks. It contains some of the same

information as the forward-looking VIX, but its dynamics are intermediate between those of the

VIX and of near-term realized volatility. Importantly, the tail risk measure is not spanned by

measures of continuous variation, and in fact it drives out these measures for realized spread jumps.

These features accord with the design of the measure as a tool for assessing instantaneous extreme

event risks. In addition, the tail risk measure forecasts well near-term market jump events.

The spread-implied tail risk measure substantially boosts predictive power over lagged tail real-

izations and other covariates. Lags alone deliver a period-ahead forecast R2 of 61% (not tabulated)

because tail risk is highly persistent. ξMKT explains more than 30% of the remaining variation to

increase R2 to 73%. By contrast, VIX alone increments R2 only to 69% (not tabulated) for realized

basis-point jumps.

To provide a back-of-the-envelope estimate of the economic importance of the increase in ex-

planatory power from using my measure, suppose that jumps are independent with average size 15

basis points and that an investor constructs ξMKT in real time. With an average of 2.9 basis point

jumps per hour and approximately 1,600 trading hours per year, annualized �medium-scale� jump

variation is 7.0%. An investor equipped to avoid an additional 12% of this variation avoids 0.84%

market volatility, and using the VIX and lagged covariates as a benchmark predictor, adding my

measure allows the investor to avoid an additional 4% of this variation and avoid 0.28% market

volatility. Relative to annual SPY volatility of 19.0% during this period, these values represent

moderate 4.4% and 1.5% reductions in exposure to market volatility, respectively.
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B. Other Sources of the Spread

Inventory Risk

Risk-averse market makers must be compensated for exposure to price variation of assets in

inventory. If market makers do not cheaply hedge inventory risks, e.g., using liquid factor-mimicking

indexes, the component of the bid-ask spread associated with inventory risk may contaminate tail-

risk estimates. To address this possibility, I isolate the component of spreads contributed by adverse

selection risks�including picking-o� risk�rather than by inventory risks.

I follow Glosten (1987) and decompose the e�ective (bid-ask) spread into �adverse selection� and

�realized spread� components. The adverse selection component captures losses to the market maker

when she sells (buys) at t and the price subsequently increases (decreases), and the realized spread

component captures the di�erence between the total spread collected�including compensation for

inventory risk�and this �permanent� price impact. Glosten (1987)'s now-standard proxy for the

adverse selection component of spreads is given by the scaled change in midpoint prices between

time t and t+ 5 minutes,

h∗it = qit

(
mi,t+5m −mit

mit

)
, (8)

where mit is the prevailing quote midpoint in security i at time t, qit = +1 for market-maker sells,

and qit = −1 for market-maker buys. Buys and sells are determined by the Lee and Ready (1991)

algorithm. I average this adverse selection value by stock and minute to obtain a continuous proxy

for adverse selection costs, and I substitute h∗ for e�ective half spreads in constructing a modi�ed

liquidity composite, V h∗/d.

Table III replicates Table II using the modi�ed liquidity composite as the dependent variable.

All coe�cients retain comparable levels of economic and statistical signi�cance, but point estimates

are typically smaller using the adverse selection component of the spread. The similarity of the

economic relations and explained variation in realized jumps with and without compensation for

inventory risks in the liquidity composite indicates that the tail risk measure is not materially

undermined by variation in inventory risk throughout the sample. As Figure IV suggests, the �rst-

order impact of using the modi�ed liquidity composite is a simple rescaling of recovered market tail
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Table III: Contemporaneous and Predictive Regressions for Jump Realizations with an

Adverse Selection Proxy
This table presents results from regressions of realized jumps against estimated tail risks,

tail_realizationt = α+ βξt−∆,MKT + γV IXt−∆ + δCVt−∆ + ζV PINt−∆ +

α−1tail_realizationt−1 + β−1ξt−1−∆,MKT +

γ−1V IXt−1−∆ + δ−1CVt−1−∆ + ζ−1V PINt−1−∆ + εt,

where ∆ = 0 and ∆ = 1 correspond to the upper and lower panels, respectively. Tail estimates are constructed using
the adverse selection component of the spread rather than e�ective spreads in the liquidity composite. Tail realizations
are measured in counts of minutely returns exceeding basis point or spread thresholds. The count variable sums jumps
exceeding 10 basis points or 5 half-spreads, and the sum variables are a weighted sum of jump sizes exceeding 5, 10,
25, and 100 basis points or 1, 5, 10, or 25 half-spreads. Continuous variation is estimated by hour with a 2.5 standard
deviation threshold on minutely price movements. VPIN is constructed using bulk-volume classi�cation with volume
bins on front-month E-mini S&P 500 futures. Regressions consist of hourly observations for the 2005�2013 sample
in the baseline speci�cation and for 2005-2011 where VPIN is included. Standard errors are HAC with monthly (126
observation) bandwidth. ξt,MKT and VPIN are normalized by their standard deviations in both panels. t-statistics
are in parentheses.

SPY Basis-Point Jumps

Jump Count Jump Sum

ξMKT 2.19∗∗∗ 2.04∗∗∗ 1.34∗∗∗ 34.96∗∗∗ 32.58∗∗∗ 19.01∗∗∗

(6.03) (6.28) (6.18) (8.49) (9.13) (6.70)

V IX 1.02∗∗∗ 0.97∗∗∗ 17.18∗∗∗ 15.86∗∗∗

(8.29) (6.48) (10.31) (7.24)

CV 2.82∗∗∗ 60.94∗∗∗

(1.57) (2.68)

V PIN 2.14∗∗∗ 43.31∗∗∗

(5.13) (8.42)

Obs. 11280 11280 6398 11280 11280 6398

R2 0.82 0.84 0.86 0.85 0.88 0.89

SPY Spread Jumps

Jump Count Jump Sum

ξMKT 3.04∗∗∗ 2.55∗∗∗ 1.98∗∗∗ 30.24∗∗∗ 27.40∗∗∗ 18.29∗∗∗

(4.13) (3.75) (4.46) (6.37) (6.28) (5.66)

V IX 1.88∗∗∗ 1.55∗∗∗ 14.37∗∗∗ 12.00∗∗∗

(6.77) (5.27) (9.04) (6.25)

CV 0.60 35.36∗∗

(0.39) (1.98)

V PIN 6.31∗∗∗ 43.24∗∗∗

(10.11) (10.23)

Obs. 11280 11280 6398 11280 11280 6398

R2 0.74 0.76 0.80 0.80 0.82 0.85

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗p < 0.1
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Table III: Contemporaneous and Predictive Regressions for Jump Realizations with an

Adverse Selection Proxy (Continued)

SPY Basis-Point Jumps

Jump Count Jump Sum

ξMKT 3.23∗∗∗ 2.61∗∗∗ 1.16∗∗∗ 50.87∗∗∗ 40.83∗∗∗ 17.74∗∗∗

(11.31) (9.95) (4.14) (11.51) (10.00) (4.10)

V IX 1.17∗∗∗ 0.96∗∗∗ 20.17∗∗∗ 16.73∗∗∗

(9.46) (5.49) (11.27) (6.29)

CV 12.10∗∗∗ 175.23∗∗∗

(3.61) (5.01)

V PIN 1.47∗∗ 35.94∗∗∗

(2.34) (5.03)

Obs. 9016 9016 5114 9016 9016 5114

R2 0.68 0.74 0.79 0.71 0.77 0.82

SPY Spread Jumps

Jump Count Jump Sum

ξMKT 5.38∗∗∗ 3.93∗∗∗ 2.30∗∗∗ 46.57∗∗∗ 36.50∗∗∗ 19.25∗∗∗

(7.11) (4.99) (4.11) (10.73) (7.92) (4.77)

V IX 1.92∗∗∗ 1.50∗∗∗ 17.29∗∗∗ 13.55∗∗∗

(5.50) (4.29) (10.85) (6.39)

CV 7.51∗∗ 117.14∗∗∗

(2.27) (4.29)

V PIN 6.72∗∗∗ 39.95∗∗∗

(11.19) (8.47)

Obs. 9016 9016 5114 9016 9016 5114

R2 0.56 0.63 0.70 0.61 0.67 0.74

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗p < 0.1
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Figure IV: Comparison of Market Jump Risks Net of Alternative Sources of the Spread
Figures plot rolling ten-day means of hourly estimated market tail risks for each trading date in 2004�2013. The solid
blue line is the baseline estimation of Equation (6). The dashed red line replaces the e�ective half-spread with the
adverse selection component of the spread. The dotted yellow line adds a stock-quarter control for the probability
of informed trading. The bottom plot aligns the series by subtracting series means and dividing by series standard
deviations.
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risks, and the correlation between the modi�ed and unmodi�ed tail risk series exceeds 92%.

At the same time, the smaller coe�cients obtained using h∗ rather than h indicate either that

liquidity providers require greater compensation for their services when market jump risk is high

or that the lagged tail-risk measure has greater auxiliary forecasting power than before, likely due

to measurement error in the modi�ed series. Two facts point to the latter explanation rather than

an omitted-variable bias: (1) correlations between the two series are very high, but (2) using the

modi�ed liquidity composite reduces the hourly autocorrelation of the tail-risk series from 79% to

66%. That the VIX, continuous variation, and VPIN appear to absorb some of the baseline tail-

risk measure's explanatory power also points to a measurement-error explanation for the smaller

coe�cients.

Non-Jump Adverse Selection

Adverse selection imposes costs on market makers through two qualitatively di�erent modes:

1. Intermediation against informed traders with long-lived information (�slow�);

2. Picking o� by stale-quote snipers (�fast�).

Cross-sectional variation in spreads re�ects di�erences in exposures to long-lived informational

risk in addition to picking-o� risk. The tail-risk measure su�ers from omitted-variable bias if assets

with high betas are more exposed to non-jump or �slow� adverse selection risk.

Such alignment is tantamount to market participants having private information on the un-

derlying factor. Gorton and Pennacchi (1993) and others suggest that private informational ad-

vantages are unlikely for systematic factors. They argue that a key advantage of composite or

factor-mimicking products such as the SPY is their low risk of slow adverse selection because in-

sider information is typically known at the security level rather than at the aggregate level.

I support this argument by showing that controlling for stock-level slow adverse selection does not

meaningfully a�ect recovered tail risks for the market factor. Speci�cally, I include the probability

of informed trading (PIN) measure of Easley and O'Hara (1992) and Easley, Kiefer, O'Hara, and

Paperman (1996) to control for the arrival rate of informed traders. The PIN measure is constructed
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under the assumption that order �ow tilts in the direction of information that persists throughout

the trading day unbeknownst to the market maker. Such information is long-lived with respect to

the horizon of HFT market makers, and as such, PIN should primarily capture costs of slow rather

than fast adverse selection. I compute stock-level PIN estimates quarterly for the 2005�2013 sample

period using the methodology of Yan and Zhang (2014).15

Table IV reports the results of the contemporaneous regression of realized jumps on implied mar-

ket tail risk, where the implied tail risk estimation equation adds the stock-date PIN characteristic

to the right-hand side of Equation (6). Like the tail-risk measure net of potential inventory risk, the

tail risk measure net of slow adverse selection risk performs similarly to the baseline speci�cation

in matching time variation in market tail realizations. Indeed, no tail risk coe�cient in Table IV is

appreciably di�erent from its counterpart in Table II, and the time-series correlation of baseline and

PIN-adjusted series is 98%. Omitted stock-level �slow� adverse selection does not bias my measure

because it exhibits low cross-sectional correlation with factor betas; although slow adverse selection

may be important at the security level, it �washes out� in my estimate of factor risks.

C. Other Sources of Omitted Variable Bias

The discussion of inventory risk and non-jump adverse selection in Section V.B confronts the

most likely empirical threats to the interpretation of ξkt as tail risk for factor k at date t.16 Short

of conducting an instrumental variables analysis, however, it is unlikely that omitted-variable bias

can be completely excluded in interpreting ξkt. This said, there are three reasons to believe that

my tail risk measure is not seriously contaminated by omitted factors.

First, several recent papers document a low-dimensional high-frequency factor structure, by

contrast with the higher-dimensional factor structure present in low-frequency data and mimicked

by models such as the Barra U.S. Equity Model (USE4). Pelger (2017) �nds a market factor and

three industry factors (�nance, oil, and electricity). Aït-Sahalia and Xiu (2018) recover a market

15An active literature describes issues encountered in estimating PIN in fast-moving equity markets. Results are
robust across alternate PIN estimation methodologies.

16Following the recommendation of a referee, I also control for potential bias associated with idiosyncratic risks
using idiosyncratic volatility and idiosyncratic volatility factor loadings in the Online Appendix. My tail risk estimates
are virtually unchanged in both cases.
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Table IV: Contemporaneous and Predictive Regressions for Jump Realizations Control-

ling for PIN
This table presents results from regressions of realized jumps against estimated tail risks,

tail_realizationt = α+ βξt−∆,MKT + γV IXt−∆ + δCVt−∆ + ζV PINt−∆ +

α−1tail_realizationt−1 + β−1ξt−1−∆,MKT +

γ−1V IXt−1−∆ + δ−1CVt−1−∆ + ζ−1V PINt−1−∆ + εt,

where ∆ = 0 and ∆ = 1 correspond to the upper and lower panels, respectively. Tail estimates include a stock-quarter
control for the probability of informed trading. Tail realizations are measured in counts of minutely returns exceeding
basis point or spread thresholds. The count variable sums jumps exceeding 10 basis points or 5 half-spreads, and
the sum variables are a weighted sum of jump sizes exceeding 5, 10, 25, and 100 basis points or 1, 5, 10, or 25
half-spreads. Continuous variation is estimated by hour with a 2.5 standard deviation threshold on minutely price
movements. VPIN is constructed using bulk-volume classi�cation with volume bins on front-month E-mini S&P 500
futures. Regressions consist of hourly observations for the 2005�2013 sample in the baseline speci�cation and for
2005-2011 where VPIN is included. Standard errors are HAC with monthly (126 observation) bandwidth. ξt,MKT

and VPIN are normalized by their standard deviations in both panels. t-statistics are in parentheses.

SPY Basis-Point Jumps

Jump Count Jump Sum

ξMKT 4.00∗∗∗ 3.61∗∗∗ 3.11∗∗∗ 64.07∗∗∗ 57.67∗∗∗ 44.98∗∗∗

(12.78) (12.91) (10.09) (18.62) (20.37) (11.58)

V IX 0.95∗∗∗ 0.92∗∗∗ 15.96∗∗∗ 15.17∗∗∗

(7.05) (6.09) (12.49) (9.23)

CV 1.48 41.72∗∗

(0.88) (2.18)

V PIN 1.18∗∗∗ 28.76∗∗∗

(3.29) (7.35)

Obs. 11280 11280 6398 11280 11280 6398

R2 0.85 0.86 0.87 0.88 0.89 0.91

SPY Spread Jumps

Jump Count Jump Sum

ξMKT 6.08∗∗∗ 5.20∗∗∗ 4.91∗∗∗ 54.84∗∗∗ 50.06∗∗∗ 42.18∗∗∗

(6.46) (5.85) (7.98) (12.19) (11.75) (10.90)

V IX 1.78∗∗∗ 1.46∗∗∗ 13.34∗∗∗ 11.30∗∗∗

(8.17) (5.85) (10.39) (7.43)

CV -1.76 18.03

(-1.46) (1.19)

V PIN 4.73∗∗∗ 29.57∗∗∗

(6.87) (7.19)

Obs. 11280 11280 6398 11280 11280 6398

R2 0.77 0.78 0.82 0.83 0.84 0.87

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗p < 0.1
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Table IV: Contemporaneous and Predictive Regressions for Jump Realizations Control-

ling for PIN (Continued)

SPY Basis-Point Jumps

Jump Count Jump Sum

ξMKT 5.47∗∗∗ 4.26∗∗∗ 2.48∗∗∗ 86.26∗∗∗ 65.93∗∗∗ 37.23∗∗∗

(18.90) (17.96) (6.65) (21.12) (19.25) (7.38)

V IX 1.19∗∗∗ 1.01∗∗∗ 20.28∗∗∗ 17.25∗∗∗

(7.81) (5.38) (9.61) (6.15)

CV 9.22∗∗∗ 135.86∗∗∗

(2.69) (3.91)

V PIN 0.73 24.46∗∗∗

(1.21) (3.26)

Obs. 9016 9016 5114 9016 9016 5114

R2 0.72 0.76 0.80 0.75 0.79 0.83

SPY Spread Jumps

Jump Count Jump Sum

ξMKT 9.15∗∗∗ 6.65∗∗∗ 5.04∗∗∗ 76.37∗∗∗ 59.43∗∗∗ 39.77∗∗∗

(9.53) (7.08) (6.70) (17.34) (12.91) (7.65)

V IX 1.97∗∗∗ 1.53∗∗∗ 17.62∗∗∗ 14.04∗∗∗

(7.98) (5.48) (11.77) (7.04)

CV 2.38 76.11∗∗∗

(0.79) (2.93)

V PIN 5.12∗∗∗ 27.06∗∗∗

(8.35) (5.26)

Obs. 9016 9016 5114 9016 9016 5114

R2 0.61 0.65 0.72 0.67 0.70 0.76

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗p < 0.1
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factor and a �nancial industry factor. Li, Todorov, Tauchen, and Lin (2017) �nd a one-factor

structure around market jump events. Taken together, these papers suggest that other factors in

the data are less important for explaining covariation in high-frequency returns, and by extension,

my study of market and �nancial factors is unlikely to be threatened by omitted factors.

Second, several high-frequency signals used by practitioners do not necessarily have an aggregate

impact that would generate persistent risk exposures. Chinco, Clark-Joseph, and Ye (2017) o�er one

such example. In their paper, the authors extract short-lived predictors using linear combinations of

stock returns. The set of securities with predictable returns varies rapidly�on the order of minutes

rather than months�as do the predicting stocks. They do not �nd stable factor relationships

that would (1) deliver nonzero annual time-series betas and (2) contribute to omitted-variable bias

in the cross-sectional slopes. Instead, such short-lived predictors would manifest as idiosyncratic

picking-o� risks to liquidity providers and show up in ξ̃.

Third, all of the largest increases in recovered extreme event risk for the market (�nancial

sector) correspond with major market news (�nancial sector news), as described in Figure II (Figure

VIII). At least for the most important market events, contamination by omitted factors seems

unlikely�jumps in other factors with betas correlated with market or �nancial sector betas do not

drive the innovations of greatest interest in this study.

VI. Applications

A. The 2010 Flash Crash

In a spectacular market episode, the May 6, 2010 Flash Crash saw equity indices decline by

5�6% and revert almost completely within a 30-minute period. Assessing welfare consequences

associated with the 2010 Flash Crash has proved even more challenging than explaining the event's

causes.17 While Kirilenko, Kyle, Mehrdad, and Tuzun (2017) tabulate buyers and sellers in S&P

500 E-mini futures (�E-mini�) during the Flash Crash, no corresponding data exists to evaluate the

17 Explanations for the Flash Crash abound. Among these are that a single large trader's faulty algorithm caused
a severe order �ow imbalance (CFTC and SEC (2010)); extreme order �ow toxicity drove away market makers and
collapsed liquidity (Easley, López de Prado, and O'Hara (2012)); and a breakdown in cross-market arbitrage brought
about an extreme price of immediacy (Menkveld and Yueshen (2017)).
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redistributive consequences of the extreme turnover in equities and index products. Moreover, much

popular discussion following the 2010 Flash Crash centers on distrust of the market mechanism and

fears of future crashes, yet such concerns are inherently hard to quantify.

My measure of instantaneous jump risks is well-suited to evaluating the costs of rapid jump

events. I require only that such events exceed the market makers' typical holding period and thus

contribute to picking-o� risk. Market makers fear picking o� on both the initial price decline (or

rise) and on the return because extended price disruptions of several minutes a�ect a security's

�terminal value� with respect to the market maker's trading horizon.18

To demonstrate its utility in assessing the costs of �ash crashes, I construct tail risk measures

around and during May 6, 2010 using the one-factor market model. A one-factor market model is

particularly apt in this instance because the 2010 Flash Crash originated in S&P 500 E-mini futures,

a key price discovery market for the S&P 500. I estimate tail risks every 15 minutes to achieve high

resolution on the crash interval (2:30�2:59pm) and surrounding trading hours.

Figure V plots market and idiosyncratic tail measures from 12:45pm on May 5, 2010 through

12:45pm on May 7, 2010 for each quarter hour from 9:45am to 3:45pm. To capture innovations

and place risk changes in context of normal intraday and slow-moving macroeconomic variation,

I di�erence the value during the same quarter hour on May 4, 2010, and divide by the standard

deviation of di�erences for the same quarter hour over the preceding 63 trading days up to and

including May 4, 2010 (a calendar quarter). Several new features are readily apparent. First, the

Flash Crash itself is associated with extreme contemporaneous elevations of both the market (96

standard deviations) and idiosyncratic (73 standard deviations) tail risk measures. Second, jump

risks remain elevated for the remainder of the trading day and throughout May 7, 2010, even after

the initial shock subsides. Third, market tail risks increase a quarter hour before idiosyncratic tail

risks, likely because the Flash Crash begins in the E-mini, a nearly ideal S&P 500 index proxy.19

Volume-adjusted spreads widen and depth fall proportionally to market betas rather than in equal

18Kirilenko et al. (2017) �nd support for market makers not holding through �long� crashes. Rather than maintain-
ing inventory during the 2010 Flash Crash, high-frequency market makers engaged in rapid turnover, or �hot potato�
activity.

19The gap between the series is not driven by estimation error; the 95% con�dence bands for the market and
idiosyncratic tail risk series do not overlap over the 2:00�2:29pm window.
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Figure V: Standardized Deviations in Jump Expectations around the 2010 Flash Crash
This �gure plots standardized deviations in jump expectations around the May 6, 2010 Flash Crash. Tail risks
are assessed with a market model with 15-minute increments. For each quarter hour, I normalize each value by
subtracting the value during the same quarter hour on May 4, 2010, and dividing by the 15-minute speci�c standard
deviation of this value across all dates in the 63 trading days up to and including May 4, 2010. The top �gure plots
the normalized value for the market factor before (green circles), during (red stars), and after (yellow diamonds)
May 6, 2010. The dotted line plots the normalized 15-minute estimate for realized volatility. Black circles denote
the 2:30�2:59pm interval during which the crash and reversion occur. The middle and bottom plots provide the
corresponding information for the idiosyncratic jump factor and the VIX.
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Figure VI: Long-Term E�ects of the 2010 Flash Crash on Implied Jump Risk
This �gure plots �ve-day backward-looking moving averages of the quarter-hour jump measure around the 2010
Flash Crash. Solid blue and dashed red lines correspond to implied market and idiosyncratic jump risks, with their
associated scale on the left axis. The dotted yellow line is the VIX, and its scale is on the right axis. The vertical
dashed line marks May 6, 2010, and the vertical dotted line marks two business days after the event, May 10, 2010.
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measure across stocks.

Intriguingly, the market tail risk measure increases by 20 standard deviations in the 2:15�2:30pm

interval relative to its value on May 4, 2010. Market makers anticipate distress conditions even before

Waddell & Reed initialized its trading algorithm at 2:32pm (Menkveld and Yueshen (2017)).20 All

told, the preceding relations align with several existing explanations of the Flash Crash and reassure

that the proposed risk measure e�ectively anticipates near-term tail risks.

By contrast with my measure, options data used for constructing the VIX and other forward-

looking risk measures incorporate volatility and jump information days or weeks beyond the duration

of �eeting, mean-reverting �ash crashes, and correspondingly are much less a�ected by such events.

Although the VIX is somewhat elevated during the Flash Crash, the Flash Crash is not an extreme

20Moreover, as detailed in the Online Appendix, market buy depth systematically declines relative to market sell
depth in line with market betas, suggesting that liquidity providers are especially concerned about the risk of market
down jumps prior to the Flash Crash. The joint CFTC and SEC report on the 2010 Flash Crash documents a similar,
lopsided deterioration of market depth for the E-Mini in the hour preceding the Flash Crash.
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event for the VIX except in the rapidity of its increase intraday. An equally large and comparably

sharp increase in implied volatility occurs in the same month: the normalized change-in-VIX measure

achieves the same level on May 20, a day coinciding with a local maximum for the VIX (Figure

VI). Likewise, my measure di�ers from VPIN in achieving an all-time high before the Flash Crash

occurs and having no false positives for su�ciently high levels of implied market risk (Andersen and

Bondarenko (2014a,b, 2015)).

The spread-implied measure also provides a longer-term view of changes in tail risk around

the 2010 Flash Crash. The tail risk measure should remain elevated if the 2010 Flash Crash

truly increases stability fears among market participants. Evidence for this e�ect is unambiguously

negative. From Figure VI, we observe that both tail risk measures return to roughly their pre-Flash

Crash levels only days later, and indeed tail risk in the week after the Flash Crash is statistically

indistinguishable from tail risk in the week before it. Although longer-term average tail risks (and

spreads) increase slightly in post-Crash weeks, these increases occur after May 10, 2010, several days

after the crash. Subsequent tail risk elevations are inconsistent with a story of heightened perceived

Flash Crash risk and likely arise from macroeconomic sources. In light of these results, it is di�cult

to argue that the 2010 Flash Crash had a persistent e�ect on market fears: high-frequency market

makers should be among the most attuned to potential �ash crash risk, yet their pricing of crash

risks in spreads quickly reverts.

B. Federal Open Market Committee Announcements

The Federal Open Market Committee (FOMC) holds eight scheduled meetings per year to discuss

salient economic and �nancial issues and policy responses. At the conclusion of each meeting, the

FOMC releases a statement summarizing its views and actions. The release of these statements is

among the most important scheduled macroeconomic news announcements. Several recent papers

have documented empirical regularities associated with these announcements. Savor and Wilson

(2013) and Lucca and Moench (2015) �nd that announcement-day average stock returns comprise

a large fraction of the annual equity premium, and Savor and Wilson (2014) �nd that the CAPM

works well for cross-sectional pricing during FOMC days.
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Rational explanations for these phenomena require that risk or risk aversion be highly time-

varying as measured in FOMC event time. Although realized market volatility is lower than average

during the FOMC pre-announcement period, elevated and di�cult-to-observe jump risk may o�er

a partial, rational explanation. High market jump risk requires a higher equity premium, and

the increased importance of market jump risk can enforce the CAPM if the CAPM works for

discontinuous returns (as suggested by Bollerslev, Li, and Todorov (2016)). Moreover, the sample

of FOMC announcements may be too short for these jump risks to have been realized.

I apply my tail risk extraction methodology to analyze jump risks around FOMC announcements

and �nd evidence against this hypothesis of elevated market tail risk during the high-return period.

For each quarter-hour interval and calendar year, I compute the average FOMC announcement

date tail risk, subtract the average non-FOMC announcement tail risk, and normalize by dividing

by the respective standard deviation of tail risks across all days for each quarter hour and year.

Importantly, the scheduling of announcements historically has not been precise enough to violate

the assumption of Poisson arrivals of fundamental news: although market participants know the

planned FOMC announcement time, there is signi�cant uncertainty about precisely when the news

comes out. This uncertainty in the past has been on the order of several minutes, as Figure VII

illustrates, and translates in the context of the model into a sharply elevated jump risk for the

interval containing the announcement.

Figure VII plots deviations in perceived tail risks around FOMC announcements. For every

year in the sample, FOMC announcements indeed coincide with sharply elevated perceived tail

risk relative to the non-FOMC dates in the same year.21 Relative to the preceding quarter hour,

most years also see a marked, anticipatory increase in implied tails in the quarter hour before the

FOMC announcement (typically 2:00�2:14pm).22 These anticipatory movements in tail risk can

be explained by (1) uncertainty in the exact timing of the information release, as suggested by

within-year dispersion of the announcement minute around the year's modal quarter hour, and

21Crisis years have a much larger unnormalized FOMC announcement e�ect, particularly in 2008. However, the
large �uctuations in tail risk during 2008�2009 counterbalance the increased di�erences between FOMC and non-
FOMC day means.

22These early-response results add color to Jiang, Lo, and Verdelhan (2011), who �nd increased spreads, decreased
depth, and stagnant trading volume in the �ve minutes before major market news announcements in the U.S. Treasury
bond market.
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Figure VII: Intraday Tail Risks around FOMC Announcements
This �gure plots intraday tail risks for the market factor for FOMC and non-FOMC announcement dates from
2005�2013. For each quarter-hour interval and calendar year, I compute the average FOMC announcement date tail
risk and subtract the average non-FOMC announcement tail risk. I then normalize this quantity by the standard
deviation of tail risks for all days in the same quarter hour and year. Stars indicate FOMC announcement times
retrieved by minute from the �rst post-statement news article on Bloomberg or Dow Jones newswires following
Fleming and Piazzesi (2005). The lower plot zooms in on the 1:45-2:45pm interval during which most announcements
occur.
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(2) fear of early information leakage and attendant price jumps, as suggested by the empirical

investigations of Bernile, Hu, and Tang (2016) and Kurov, Sancetta, Strasser, and Wolfe (2017).

Notably the measure does not simply re�ect contemporaneous realized volatility around the FOMC

announcement: Lucca and Moench (2015) instead �nd that volatility decreases monotonically in

the hours prior to the FOMC announcement (Figure 3 of their work).

Although the tail risk measure registers increased risk in the quarter hours around FOMC news,

implied tail risk is typically lower than average prior to the FOMC announcement, in parallel with

the period's reduced volatility. There is little evidence that the high average returns the morning

of FOMC announcements can be attributed to market jump fears. The pre-FOMC announcement

drift and announcement-day success of the CAPM therefore cannot be attributed to an increase in

the (physical) probability or magnitude of market jumps.

C. The 2007�2008 Financial Crisis

I study the 2007�2008 Financial Crisis to demonstrate the potential of my approach to identify

factor- or sector-speci�c extreme-event risks. Speci�cally, I apply the jump extraction technique to

estimate the magnitude of perceived jump risks to a ��nancials� factor independent from market

risks. The choice of �nancial-sector risks is motivated by their economic importance during the

2000s as well as by the di�culty of disentangling �nancial sector risks from market risks using

alternate methods; during this period, the rolling daily correlation of XLF, my �nancial-sector

factor-mimicking portfolio, and the SPY often exceeds 90%. At the same time, Aït-Sahalia and Xiu

(2018) demonstrate that the �rst two principal components of high-frequency returns correspond

well with market and �nancial-sector innovations, respectively, suggesting that innovations in these

factor risks should be detectable at high frequency.

The central regression in this analysis modi�es Equation (6) to accommodate a �nancials fac-

tor:23 (
V h

d

)
it

= ξ̃t + ξt,MKTβi,MKT + ξt,F IN |βi,F IN |+ εit, ∀t. (9)

23The Online Appendix introduces another bivariate risk model with market factor and value factor (HML) risks.
Although HML explains less cross-sectional variation in returns at high frequencies, the tail risk methodology nonethe-
less recovers clearly interpretable HML jumps.
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I exclude co-jump terms for the market and �nancial factors because (1) the joint risk of tail events

in the market and �nancial factors is not of independent interest and (2) rank tests around market

jumps �nd evidence against factor co-jumps with the aggregate market (Li, Todorov, Tauchen, and

Lin (2017)). Appendix A discusses this point in additional detail.

shring Figure VIII plots the time series of implied �nancial sector tail risks. The recovered series

of �nancial tail risks is visually similar to the one-factor market risks of Figure II, but it di�ers

somewhat in the events corresponding with the largest changes in �nancial sector risks. Several

events associated with large market risk increases in the one-factor model are in fact speci�c to

the �nancial sector. Large-scale asset purchases, bank bailout legislation, and bank nationalization

news feature prominently for �nancials, but not for the aggregate market in the two-factor model.

Conversely, the FOMC interest rate target announcements of 2007�2008 and the S&P U.S. credit

rating downgrade shock the aggregate market but not the �nancial sector separately.

I now test formally whether the recovered �nancials tail risks indeed correspond with jumps in

the �nancials factor. By analogy with Table II, Table V compares medium-scale tail realizations in

the XLF to ξFIN in the two-factor model of Equation (9). As before, I split speci�cations based on

(1) the number of minutely di�erences of more than 10 basis points (�jump count�) and the weighted

sum of jumps of 5, 10, 25, and 100 basis points and (2) the number of minutely di�erences of more

than 5 half-spreads (�jump count�) and the weighted sum of jumps of 1, 5, 10, and 25 half-spreads.

Rather than using the VIX and other controls, I include market jump tail risk and realizations as

controls to quantify the degree to which jump types are successfully disentangled.

All speci�cations feature a strong relation between �nancial-sector tail risk and realized �nancial-

sector jumps. A one standard deviation increase in ξFIN corresponds with 3.9 more basis-point

jumps and 1.4 spread jumps on a baseline standard deviation of 10.7 and 2.5 XLF jumps per hour,

respectively. Which tail risk measure is more strongly associated with �nancial sector jumps depends

on the speci�cation, but both ξMKT and ξFIN clearly possess explanatory power throughout. The

strong relation between market tail risk and XLF jump realizations comes about because SPY and

XLF often co-jump during the �nancial crisis, the primary source of variation in tail risk during the

sample.
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Figure VIII: Largest Increases in Financial-Sector Tail Risk, 2004�2013
This �gure plots hourly estimated tail risks for �nancial risks (dark gray) and market risks (light gray) in a two-factor
market and �nancials model. The �fteen largest increases in tail risks within a one-month window are overlaid with
a black `X.' Changes are measured as the tail risk at date t and hour h less the tail risk at date t − 1 and hour h.
The table below o�ers a brief description of coincident events on tail-risk news days. Standardized values divide by
the full time-series standard deviation of changes. Bolded events correspond with extreme changes in both factors
(using the two-factor model) within 24 hours. Implied tails on October 10, 2008 are truncated for visual clarity.
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13-Aug-2007 11:15

17-Jul-2008 10:15

02-Sep-2008 10:15

19-Sep-2008 10:1510-Oct-2008 15:15

28-Oct-2008 15:15

20-Nov-2008 10:15

09-Dec-2008 15:15
20-Feb-2009 15:15

19-Mar-2009 10:15

21-Apr-2009 11:15
05-Jun-2009 10:15

06-Jul-2009 10:15

27-Oct-2009 10:15

06-May-2010 15:15

market

Date Value Event

13-Aug-07 11:15 4.13 Fed intervenes to stave o� credit crisis, end �Quant Quake�
17-Jul-08 10:15 5.14 Large banks report collapsing pro�ts and/or large losses
2-Sep-08 10:15 4.53 Korean Development Bank con�rms interest in Lehman lifeline as potential

partner banks express skepticism
19-Sep-08 10:15 15.73 TARP proposal becomes public; Treasury backs money-market funds
10-Oct-08 15:15 23.78 Stock market crashes in Asia, Europe, and the U.S.
28-Oct-08 15:15 6.61 First round of TARP bank bailouts ($115 billion)
20-Nov-08 10:15 9.87 Auto bailout rejected; sharp drop in �nancial stocks
9-Dec-08 15:15 4.35 WSJ reports �rst Congressional Oversight Panel review on bailouts harshly

criticizes Treasury, TARP
20-Feb-09 15:15 6.38 Sen. Dodd suggests bank nationalization may be necessary
19-Mar-09 10:15 7.05 FOMC announces $1T in new bond and MBS purchases
21-Apr-09 11:15 4.85 BofA reports sharp rise in bad loans; �nancials down >10%
5-Jun-09 10:15 5.77 Rumors of FDIC push to increase control over Citigroup
6-Jul-09 10:15 4.17 FDIC proposes restrictions on takeovers of failed banks
27-Oct-09 10:15 4.25 House committee presents draft �Too Big to Fail� law
6-May-10 15:15 11.46 2010 Flash Crash

44



Table V: Contemporaneous and Predictive Regressions for XLF Jump Realizations
This table presents results from regressions of realized �nancial sector (XLF) jumps against estimated tail risks,

tail_realizationt = α+ βξt−∆,FIN + γξt−∆,MKT + δSPY_tail_realizationt +

α−1tail_realizationt−1 + β−1ξt−1−∆,FIN +

γ−1ξt−1−∆,MKT + δ−1SPY_tail_realizationt−1 + εt,

where ∆ = 0 and ∆ = 1 correspond to the upper and lower panels, respectively. Tail realizations are measured in
counts of minutely returns exceeding basis point or spread thresholds. The count variable sums jumps exceeding 10
basis points or 5 half-spreads, and the sum variables are a weighted sum of jump sizes exceeding 5, 10, 25, and 100
basis points or 1, 5, 10, or 25 half-spreads. Regressions in the top panel consist of the 2005�2013 sample by trading
hour, with one-month rolling HAC standard errors (126 observations). Regressions in the bottom panel average
all variables within each year and hour of the trading day and use White standard errors. ξt,MKT and ξt,FIN are
normalized by their standard deviations in both panels. t-statistics are in parentheses.

XLF Basis-Point Jumps

Jump Count Jump Sum

ξFIN 3.91∗∗∗ 1.39∗∗ 0.69∗ 71.71∗∗∗ 28.42∗∗∗ 17.78∗∗∗

(5.43) (2.19) (1.88) (8.96) (3.32) (4.04)

ξMKT 4.17∗∗∗ 0.42 72.07∗∗∗ 0.58

(5.00) (0.85) (6.63) (0.10)

SPY Jump 0.88∗∗∗ 1.00∗∗∗

(18.81) (31.46)

Obs. 11280 11280 11280 11280 11280 11280

R2 0.86 0.88 0.92 0.87 0.89 0.94

XLF Spread Jumps

Jump Count Jump Sum

ξFIN 1.41∗∗∗ 0.48 0.49 11.11∗∗∗ 3.70∗∗ 3.63∗∗

(5.73) (1.52) (1.58) (10.15) (2.00) (2.26)

ξMKT 1.56∗∗∗ 1.42∗∗∗ 12.34∗∗∗ 3.45∗∗

(4.67) (4.60) (6.04) (2.28)

SPY Jump 0.02∗ 0.13∗∗∗

(1.68) (10.80)

Obs. 11280 11280 11280 11280 11280 11280

R2 0.60 0.65 0.65 0.76 0.80 0.86

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗p < 0.1
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Table V: Contemporaneous and Predictive Regressions for XLF Jump Realizations

(Cont.)

XLF Basis-Point Jumps

Jump Count Jump Sum

ξFIN 5.98∗∗∗ 3.14∗∗∗ 2.17∗∗∗ 103.43∗∗∗ 53.46∗∗∗ 39.14∗∗∗

(8.16) (5.07) (4.09) (10.90) (6.14) (6.18)

ξMKT 5.21∗∗∗ 1.60 92.19∗∗∗ 20.20

(3.92) (1.47) (5.24) (1.52)

SPY Jump 0.81∗∗∗ 0.96∗∗∗

(13.06) (17.02)

Obs. 9016 9016 9016 9016 9016 9016

R2 0.77 0.80 0.83 0.76 0.80 0.84

XLF Spread Jumps

Jump Count Jump Sum

ξFIN 1.64∗∗∗ 0.79∗∗ 0.79∗∗ 13.83∗∗∗ 6.34∗∗∗ 5.93∗∗∗

(4.62) (2.07) (2.09) (8.57) (2.87) (2.93)

ξMKT 1.65∗∗∗ 1.41∗∗∗ 14.21∗∗∗ 5.76∗∗

(4.25) (3.95) (5.05) (2.51)

SPY Jump 0.02∗∗ 0.12∗∗∗

(2.14) (8.43)

Obs. 9016 9016 9016 9016 9016 9016

R2 0.41 0.46 0.46 0.60 0.65 0.68

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗p < 0.1
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To evaluate whether ξFIN picks up �nancial sector events that are not also aggregate market

events, I add contemporaneous SPY jump counts and jump sums as an additional control. ξFIN

typically remains signi�cantly associated with XLF jumps net of market co-jumps, whereas ξMKT

is often driven out. In the Online Appendix, I also extend the sample back to July 1999�the start

date for the XLF plus six months to calculate betas�and I con�rm that the ξFIN has signi�cantly

greater independent explanatory power in periods in which market and �nancial-sector dynamics

are not so closely linked. These brief analyses suggest that the jump tail extraction technique

separately identi�es market and �nancial sector risks at high frequency.

Notably the Financial Crisis is characterized by large and asynchronous shocks to several eco-

nomic sectors, including �nancials, energy, and real estate. Although a complete description of the

extreme-event risks before and during the Financial Crisis is beyond the scope of this paper, one

could in principle extend the factor model of Equation (9) to include sector-tracking securities for

each industry, or even to decompose the market into sectors as in the Select Sector SPDR ETFs

(akin to the analysis of sectoral co-jumps in Li, Todorov, and Tauchen (2017)). Importantly for this

application, the omission of these other sectors from the estimation does not appear to contribute

much to omitted variable bias in ξFIN : ξFIN forecasts XLF jumps well, and each of the 15 largest

ξFIN changes corresponds with major �nancial-sector news.

VII. Conclusion

High-frequency market makers continually extract signals from order �ow to optimize their

provision of liquidity. Intermediaries must pay special attention to signals on potential discontinuous

price movements, because such movements can generate losses from �picking o�� by other fast

traders. Securities with larger factor loadings are more exposed to discontinuous factor movements

than are securities with smaller loadings. As a consequence, liquidity costs more for these securities,

and the cross section of liquidity costs embeds signi�cant information about near-term return factor

risks. The key contribution of this paper is the development of a methodology for extracting some

of this factor risk information in real time.

This methodology brings microstructure data to bear on measurement challenges in related
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�elds. Bid-ask spreads are unique among existing data sources in their ability to reveal intraday

changes in extreme-event risk for common factors in stock returns. By using these data, my approach

di�ers from existing methods in its ability to obtain information about (1) a wide array of return

factor risks (2) at an intraday frequency (3) for short look-ahead horizons.

This cross-sectional approach o�ers a valuable tool for researchers to evaluate extreme-event

risks. High-frequency tail risk estimates provides a viable alternative to the VIX and other leading

indicators of market turmoil. Regulators, too, might bene�t: the dramatic rise in tail risk before the

2010 Flash Crash suggests that the measure may have predictive power for severe market disruptions.

By contrast with options-implied measures, my measure cannot anticipate tail realizations be-

yond a short forecasting horizon, nor does it provide direct information on the persistence or serial

correlation of jump events. For these reasons, my measure is strictly speaking best interpreted

as market expectations of tail realizations over short horizons. Notwithstanding market makers'

limited planning horizon, however, empirical linkages between near-term factor risks and disasters

of the Rietz (1988) and Barro (2006) variety are surprisingly strong. Seminal events of the Great

Recession and 2007�2008 Financial Crisis manifest as large changes in implied tail risks in the imme-

diate term, and recent work by Andersen, Fusari, and Todorov (2015) suggests that market crashes

have their origins in sequences of �small� jumps explicitly captured by my methodology. Further

study of these linkages is left for future investigation.
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A. Derivations

Imposing the Factor Structure in Jump Returns

By assumptions 1�2, the jump intensity for stock i is given by

λjump =
∑
k

λk + λ̃, (10)

where λk is the jump intensity for factor k and λ̃ is the jump intensity for the stock's idiosyncratic

component. This representation decomposes short-lived adverse-selection risks into factor- and

idiosyncratic-news components.

Picking-o� costs to the market maker integrate over the distribution of potential jumps larger

than the half spread. By excluding co-jumps, when a factor k jumps, discontinuous returns have

a simple form, rdi = βikr
d
k, as coincident jump returns from other sources are exactly zero. Conse-

quently, we can sum over costs associated with each factor independently rather than integrating

over a potentially complicated region associated with all potential combinations of jump returns

exceeding h.

The market factor model is readily estimated in part because reliable negative betas are quite

rare among common stocks. With this factor in mind, I assume for now that all betas are positive.

Then substituting Equations (3) and (10) into Equation (2) delivers

hλFT
q∗

d
=

∑
k

λk

∫ ∞
h/βk

(βkrk − h) f (rk) drk + λ̃

∫ ∞
h

(r̃i − h) f (r̃i) dr̃i. (11)

The salient region of the jump distribution for each asset-factor combination is determined by

h/βk. For each factor k, jump risks can be decomposed into two regions: jumps larger than the

half-spread for all assets, i.e., rk ≥ h̄k ≡ maxi (hi/βik), and jumps larger than the half-spread for

some assets but not for others:

∫ ∞
hi/βk

(βikrk − hi) f (rk) drk =

∫ h̄k

hi/βik

(βikrk − hi) f (rk) drk+
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∫ ∞
h̄k

(βikrk − hi) f (rk) drk

=βik

∫ h̄k

hi/βik

F̄ (rk) drk − h̄kF̄
(
h̄k
)

︸ ︷︷ ︸
small jumps

+βik

∫ ∞
h̄k

rkf (rk) drk︸ ︷︷ ︸
large jumps

, (12)

where F̄ denotes the counter-cumulative distribution function for rk.

I assume that all jumps are large relative to half-spreads for my set of assets. In support of

this assumption, Hendershott, Jones, and Menkveld (2011) show that by 2004, the �rst year in my

sample, the e�ective half-spread for smaller-than-average (fourth size quintile) stocks is less than 6

basis points; using a β cuto� of 0.5 implies the smallest �large� jump can be less than a 12 basis point

change in price, or equivalently, less than an 8�22 cent change in the price of the SPY market proxy

during the time period considered. By contrast, the smallest (median) realized jumps detected in

the SPY by the Lee and Mykland (2008) and Bollerslev, Todorov, and Li (2013) methodologies are

26.5 (46.6) basis points and 13.5 (32.7) basis points, respectively.24 In empirical applications, I also

impose loose restrictions on the set of assets considered to exclude stocks with extreme spreads and

beta loadings to ensure that this assumption holds.25

Excluding �small� jumps delivers the following simplifying relation:

lim
h̄k↓0

∫ ∞
hi/βk

(βikrk − hi) f (rk) drk = −hi + βik

∫ ∞
0

rkf (rk) drk. (13)

Equation (11) then reduces to a linear relation between the liquidity consumer arrival rate for each

asset and the distribution of jump risks for each factor multiplied by the asset's factor exposure:

hλFT
q∗

d

(3),(10)
=

∑
k

λk

∫ ∞
h/βk

(βkrk − h) f (rk) drk + λ̃

∫ ∞
h

(r̃ − h) f (r̃) dr̃ (14)

(13)
= −

(
λ̃+

∑
k

λk

)
h+

∑
k

βkλk

∫ ∞
h̄k

rkf (rk) drk + λ̃

∫ ∞
h

r̃f (r̃) dr̃, (15)

24Jump detection tests compare �ve-minute returns against estimates of local volatility. I use a 1% signi�cance
threshold in the Lee and Mykland (2008) methodology and τ = 4 standard deviations in the Bollerslev, Todorov,
and Li (2013) methodology. Corresponding values for the Financial Select Sector SPDR ETF (XLF) are 18.2 (60.7)
and 12.5 (37.4) basis points.

25Empirically, I �nd that parameter estimates vary little with the choice of threshold h̄k for market (SPY) and
�nancial sector (XLF) test factors.
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which, replacing integrals with tail expectations and moving the �rst term to the left-hand side, is

Equation (4) up to the use of βk rather than |βk|,

(λFT q
∗ + λjumpd)

h

d
=
∑
k

λkE
[
rdk|rdk > h̄k

]
βk + λ̃E

[
r̃d|r̃d > h̄

]
. (16)

I now revisit the possibility of negative factor betas. Doing so is important for non-market

factors; for example, a jump in HML should drive �value� and �growth� stocks in opposite directions.

Fortunately recovering expected jumps with non-positive betas entails minimal modi�cation of our

previous expressions. After estimating betas in the usual time-series regressions, simply de�ne

two separate �subfactors� for each factor k for which betas are sometimes negative, and replace

βkrk with two terms β+
k r

+
k and β−k r

−
k , where + and − superscripts denote x+ ≡ x1 (x > 0) and

x− ≡ (−x)1 (x < 0). Now that all subfactor betas are weakly positive we are back to the case with

all βk > 0, and the above derivation goes through unchanged to obtain

(λFT q
∗ + λjumpd)

h

d
=
∑
k

λ+
k E

[
rdk|rdk > h̄k

]
βk1 (βk > 0)

+
∑
k

λ−k E
[
rdk|rdk < −h̄k

]
(−βk)1 (βk < 0) + λ̃E

[
r̃d|r̃d > h̄

]
. (17)

Note that by construction the subfactors for a given k cannot co-jump�we do not see a left- and

right-tail realization simultaneously for a given factor.

Symmetry of left- and right-tail risks (assumption 3) implies that the expected costs λ+
k E

[
rdk|rdk > h̄k

]
and λ−k E

[
rdk|rdk < −h̄k

]
are the same. By this assumption Equation (17) becomes

(λFT q
∗ + λjumpd)

h

d
=

∑
k

λkE
[
rdk|rdk > h̄k

]
|βk|+ λ̃E

[
r̃d|r̃d > h̄

]
. (18)

Hence taking the absolute value of beta su�ces to handle non-positive betas in the tail risk estima-

tion equation (Equation (4)).

The price of sacri�cing the symmetry assumption is that splitting jumps into up and down

components must be matched by splits of the liquidity composite on the left-hand side of Equation

(17). For example, higher depth at the best o�er than at the best bid, all else equal, indicates low
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risk of extreme up jumps relative to extreme down jumps. Using the same liquidity composite for

up and down jumps is then incorrect, and instead we would want to obtain signed versions of V h/d

for estimation. This is the approach I take in generalizing my methodology in the Online Appendix.

Allowing Co-Jumps

I now revisit assumption 2 in the context of Equations (11) and (4). Excluding co-jumps

eliminates terms in Equation (11) associated with factors moving jointly. As an example, suppose

that the econometrician considers only market and �nancial return factors and allows for co-jumps

between them. Again denoting the �nancial return factor as FIN , the additional picking-o� risk

term associated with co-jumps is

+ λ{MKT,FIN}

∫
R

(βMKT rMKT + βFINrFIN − h) d (rMKT , rFIN ) , (19)

where R is the region described by βMKT rMKT +βFINrFIN−h ≥ 0. This additional term is readily

converted into linear terms under the large-jumps assumption of the previous part if jumps are of

the same sign. Under these conditions, the additional term in Equation (19) is decomposed as

−λ{MKT,FIN} + λ{MKT,FIN}E [rMKT |rMKT , rFIN > 0]βMKT

+λ{MKT,FIN}E [rFIN |rMKT , rFIN > 0]βFIN . (20)

If jump signs di�er, additional terms arise resulting from di�erent combinations of the signs of the

co-jump returns.

In my multivariate analysis of market and �nancial jumps, I omit these additional terms be-

cause (1) the correlation between SPY and XLF returns is positive and extremely strong, on

the order of 89% in my sample, and (2) the absorption of the co-jump terms λ{MKT,FIN} ×

E [rMKT |rMKT , rFIN > 0] and λ{MKT,FIN}×E [rFIN |rMKT , rFIN > 0] has a clear associated eco-

nomic intuition. The coe�cient on βMKT is the tail risk for the market factor with or without

�nancial co-jumps, which arguably is of greater interest than either component of market factor tail

risk independently.
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B. Data Filters

The TAQ database occasionally records erroneous trade price and quantity information. I take

three precautions to avoid contamination of the sample and mistaken detection of price jumps in

Section V. First, I �lter the trade price series following the trade-data methodology of Barndor�-

Nielsen, Hansen, Lunde, and Shephard (2009). This methodology eliminates most obvious data

errors. Second, I adapt the outlier-removal procedures of Brownlees and Gallo (2006) (similar to Rule

Q4 of Barndor�-Nielsen et al. (2009)) to exclude price observations exceeding the centered median

price (excluding the current observation) on [t− 10m, t+ 10m] by 2.5 mean absolute deviations

plus a 15-basis point granularity parameter. This �lter removes most data errors in the form of

rapidly mean-reverting jumps in recorded prices. Finally, I use volume-weighted averages of prices

within each minute as raw inputs rather than individual trades or quotes. This procedure smooths

microstructure noise not of interest for my analysis.

The data is lightly �ltered to exclude stocks with imprecisely estimated betas or extreme illiq-

uidity. To be included in the sample, a stock must have:

1. Traded on at least half of the days in which the market has normal trading hours in the

observation year;

2. Quoted spreads less than 5% of the price of the stock;

3. One-sided volume exceeding 200 shares in the trading interval, but less than the 95th percentile

of one-sided volume; and

4. A market beta in [0.1, 2.5].

Securities not satisfying all of these conditions are excluded from cross-sectional regressions.

The rationale for these �lters is as follows. Filters 1 and 2 and the lower bound of �lter 3 ensure

that the stock is not too thinly traded to be reliable for risk estimation, either for computing betas

in the time series or for estimating tail risks in the cross section. The upper bound on volume in

�lter 3 ensures that results are not driven by �in�uential� assets with extremely high volume (the
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distribution of volume is roughly lognormal). Filter 4 accounts for estimation error in the betas;

especially large or small betas are likely to be the result of estimation error. In addition, β close to

zero makes less tenable the assumption of all factor jumps being greater than h/β. Of these �lters,

the volume �lter is the most stringent, and it eliminates 16.8% of security-hour observations; by

contrast, the beta �lter eliminates only 0.1% of observations. The average sample size after �ltering

is 2,820 distinct stocks for each trading hour.
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