How Do Innovation Ecosystems Emerge? The Case of Nanotechnology in Israel†

Issy Drori
Department of Organization Science
Faculty of Social Sciences
VU University Amsterdam
De Boelelaan 1105
1081 HV Amsterdam
The Netherlands
Tel: +31 20 5986309
Email: i.drori@vu.nl

Dovev Lavie
Department of Management and Technology
Bocconi University
Via G. Roentgen 1
20136 Milano MI
Italy
Tel: +39 02 58362646
Email: dovev.lavie@unibocconi.it

Submitted to Journal of Management Studies: June 16, 2022
Revised: December 12, 2022
Revised: July 7, 2023
Revised: November 1, 2023
Accepted: November 2, 2023

Keywords: ecosystem, emergence, coopetition, organizational metamorphosis, innovation, nanotechnology

†The authors are listed alphabetically and contributed equally to this paper. A preliminary version of this paper was presented at the 2016 Collaboration for Innovation Conference at the University of Groningen and the 2016 Strategic Management Society Special Conference in Rome. The paper was also presented at the 2017 Annual Conference of the Strategic Management Society in Houston, the 2018 Imperial College I&E Conversation, the 2018 Academy of Management Special Conference in Tel-Aviv, the 2021 Virtual Academy of Management Conference, and the 2022 Israel Strategy Conference in Herzlia. We appreciate the comments received from Costas Andriopoulos, Ricarda Bouncken, Peter Groenewegen, Kerstin Neumann as well as participants in seminars at Bocconi University, BI Norwegian Business School, ESADE Business School, and VU Amsterdam. The authors acknowledge financial support from the Israel Science Foundation (Grant No. 237/15) and the Eli Horowitz Institute for Strategic Management. Dovev Lavie acknowledges fellowship with the ICRIOS (Invernizzi Center for Innovation, Organization, Strategy and Entrepreneurship). We are also grateful for the contribution of Dana Alice Sheffer, for the research assistance of Tim Meyer, Alex Tuisov, and Tom Snir, for the cooperation of our informants who are listed in Appendix D, and for Joshua Jortner, Dan Vilenski, and Meir Weinstein, who authored INAB’s 2017 Final Report.

Electronic copy available at: https://ssrn.com/abstract=4620965
How Do Innovation Ecosystems Emerge? The Case of Nanotechnology in Israel

ABSTRACT

Research on innovation ecosystems has identified their evolution phases but neglected their emergence, which we know little about. We offer inductive theory to explain the emergence of the nanotechnology ecosystem in Israel. Our theory suggests that ineffective bureaucracy, resource constraints, and the conflicting agendas of the government and universities create organizational bottlenecks that impede the ecosystem's emergence. Only once these actors establish related dedicated units that are immune to these deficiencies and transition to simultaneous competition and cooperation does the innovation ecosystem begin to emerge. We further reveal how enabling and governing mechanisms that legitimate the innovation ecosystem, facilitate its emergence, and direct its evolution trajectory. Hence, we extend research that has centered on subsequent phases of evolution and explain how actors interact to facilitate the emergence of the ecosystem following technological discovery. Our study contributes to strategy research on interfirm coopetition by applying this concept to government and university actors, and by alluding to its multiple facets: identity, direction, administration, and resources. We also complement innovation research on the post-formation dynamics of ecosystems by providing insights into the missing link between technological discovery and the creation of an innovation ecosystem that brings together stakeholders to commercialize that technology.

Keywords: coopetition, ecosystem, emergence, innovation, organizational metamorphosis, nanotechnology
INTRODUCTION

How do innovation ecosystems emerge? An ecosystem refers to “the alignment structure of the multilateral set of partners that need to interact in order for a focal value proposition to materialize” (Adner, 2017, p. 40). This definition fuses the perspective of “ecosystem as structure,” which views the ecosystem as a configuration of value-creating activities, with the perspective of “ecosystem as affiliation,” which conceptualizes it as a community of affiliated actors defined by their networks (Adner, 2017). Scholars distinguish “business ecosystems,” which focus on firms embedded in their environment, from “platform ecosystems,” in which actors organize around a platform, and from “innovation ecosystems,” that center on the commercialization of a particular technological innovation and the actors that support it (Jacobides et al., 2018). We define an innovation ecosystem as the alignment structure of government, university, and other actors that interact to promote innovation and commercialization of a core technology as their common value proposition. Prior research has focused on business ecosystems and platform ecosystems (Chen et al., 2014, 2016; Gomes et al., 2018; Spigel and Harrison, 2018) rather than on innovation ecosystems, which makes it difficult to isolate the factors that drive ecosystem emergence from the interwind industry emergence. This prior research has also predominantly studied subsequent phases of evolution, with the emergence phase left understudied.

Innovation ecosystems have gained increasing attention as many commercial applications of technologies, such as nanotechnology, artificial intelligence, emotion detection, bioinformatics, and cleantech, originate in ecosystems that give rise to innovative technologies (e.g., Hannah and Eisenhardt, 2018, Krafft et al., 2014). In the U.S. alone, the National Nanotechnology Initiative invested more than $27 billion in nanotechnology research (Leonard, 2017), aiming to revolutionize the medicine, energy, water purification, manufacturing, and food industry sectors. Although the global nanotechnology market was valued at only $1.8 billion in 2020, it is expected to reach $33.6 billion by 2030 (Tewari & Kumar, 2021). The emergence of innovation ecosystems around such technologies is a critical phase that shapes the structure of relations among ecosystem members and sets the ground for entrepreneurs and firms to leverage these technologies in subsequent phases of evolution. However, this phase is far from trivial, and the ecosystem may take years to materialize following the technological discovery, with some ecosystems failing to emerge, as in the case of the commercialization of nanotechnology in India (Koshy & Sethi, 2013). The emergence of an innovation ecosystem entails coordination among various actors with conflicting agendas that may lack the needed resources for
commercialization. This makes it difficult to strive for a common value proposition that promotes commercialization.

What brings these actors together at the emergence phase? Scholars tend to take the emergence phase for granted and assume that once the technology becomes available, stakeholders can gather to commercialize it, yet this is often not the case. Without studying the emergence phase, one cannot understand how the needed technological infrastructure and relations among proponents that drive the evolution of the ecosystem come into being. Little is known about how innovation ecosystems come about since “no studies have captured the emergence of the ecosystems” (Suominen et al., 2019, p. 335). Rather, most studies have highlighted the actions of firms (Dattée et al., 2018) that join only in subsequent phases of evolution, and thus cannot explain the emergence phase. Thus, prior research has not focused on innovation ecosystems, and in particular, on their emergence phase, in which firms play a limited role. This omission restricts understanding of the dynamics that hinder the emergence of an innovation ecosystem and what dynamics enable the ecosystem members to coordinate technology development despite inherent organizational challenges. To understand how innovation ecosystems emerge, one must identify the barriers for their emergence and realize how actors manage to overcome these barriers and direct and accelerate the emergence of the ecosystem.

We develop an inductive grounded theory for the emergence of an innovation ecosystem based on a longitudinal case study (Corbin and Strauss, 1990; Suddaby, 2006) of the nanotechnology ecosystem in Israel. Nanotechnology is an excellent context for studying an innovation ecosystem (Granqvist et al., 2013; Kaplan and Radin, 2011; Mangematin and Walsh, 2012; Wry and Lounsbury, 2013). Prior research has considered nanotechnology (or “nano”) as an emerging innovation ecosystem that involves university research centers, scientists, and government agencies (e.g., Foley and Wiek, 2017; Lavie and Drori, 2012; Meyer et al., 2005). We study the nature of interdependence among these actors as well as the underlying dynamics that led to the emergence of this innovation ecosystem. We compile a chronicle of the emergence that reveals a complex interplay of the government, various interest groups, and academic institutions. Our findings uncover that it is organizational bottlenecks rather than technological bottlenecks that hinder the ecosystem’s emergence and are critical at that phase. These bottlenecks involve ineffective bureaucracy in the form of fragmentation, rigidity, myopia, discoordination, and administrative void as well as resource constraints imposed by shortage, suboptimal priorities, and scattering of resources. The findings also guide our explanation of how
organizational metamorphosis and coopetition, which have not been considered in prior research on the emergence of ecosystems, enable actors to align their interests and pool their resources in order to dislodge the ecosystem from these bottlenecks. Finally, our findings reveal unique enabling and governing mechanisms that facilitate the emergence of the ecosystem and direct its evolution in a trajectory that departs from the natural inclinations of some actors. Hence, we shed light on the underlying dynamics that endogenously shape the emergence of the innovation ecosystem.

Our study offers several contributions. Our primary contribution is offering a novel theory for how a new innovation ecosystem comes about. By underscoring how the interaction between government and universities shapes the emergence of the innovation ecosystem, our theory complements theories of ecosystem evolution that have highlighted the roles of firms and entrepreneurs in subsequent phases of evolution of business and platform ecosystems. Besides their limited applicability for innovation ecosystems that do not center on value capture, such research has taken for granted the availability of technological infrastructure and studied arising technological bottlenecks. Instead, our theory considers how actors can unblock organizational bottlenecks that impede or delay the emergence of the ecosystem. Hence, our theory explains not only how ecosystems emerge but also how come they may not emerge despite technological discovery. Without analyzing the anatomy of failure, it is impossible to understand what drives the evolution of innovation ecosystems and how actors overcome resource constraints and conflicting interests that hinder the evolution of these ecosystems. Our second contribution is revealing the roles of organizational metamorphosis and coopetition which have been previously overlooked by prior research on ecosystem emergence. We explain how metamorphosis and coopetition enable actors to unblock organizational bottlenecks by facilitating organizational alignment and striving for a shared mission which is followed by coordination and pooling of resources, thus supporting the commercialization of a technology. Hence, our study informs research on ecosystem evolution and provides guidance for how to facilitate the emergence of innovation ecosystems. Our final contribution is advancing broader streams of research on strategy and innovation. For instance, our theory extends the notion of coopetition to encompass behavioral and organizational aspects beyond the narrow strategic aspects relating to firms’ resource competition and pooling. Furthermore, our notion of metamorphosis suggests that to overcome organizational bottlenecks, actors can

1 Organizational metamorphosis refers to the creation of a new organization with altered traits which is derived from an antecedent organization, while coopetition intertwines competition and cooperation.
maintain their ineffective bureaucracy in parallel to operating under a new set of rules and practices. These are essential contributions that shed a new light on the emergence of innovation ecosystems, inform our understanding of ecosystem evolution, and generate new insights for strategy and innovation research.

THEORETICAL BACKGROUND

The notion of innovation ecosystem has been used loosely (Gomes et al., 2018), yet scholars typically relate it to coordinated knowledge creation, dissemination, and potential use, whereby actors “interact to catalyze creativity, trigger invention and accelerate innovation across scientific and technological disciplines, public and private sectors (government, university, industry and non-governmental knowledge production, utilization and renewal entities)” (Carayannis and Campbell, 2009, p. 202–203). In all ecosystems, actors create value by structuring relations and adapting to the environment. Yet, business and platform ecosystems mostly involve interactions among firms that interdependently deliver a product or service, whereas innovation ecosystems involve university research centers and government agencies that strive to develop and promote a technology. Unlike business ecosystems in which firms engage in value creation and capture, innovation ecosystems focus on value creation (Gomes et al., 2018). In innovation ecosystems, the linear model applies: “first, there is basic university research. Later this basic research converts into applied research of intermediary organizations (university-related institutions). Finally, firms pick up, and transform applied research to experimental development, which is then being introduced as commercial market applications” (Carayannis and Campbell, 2009, p. 210). Hence, firms’ involvement in the emergence of innovation ecosystems is limited.

Prior research has focused on business and platform ecosystems more than on innovation ecosystems (Adner and Kapoor, 2010), identifying phases of evolution (Moore, 1993) during which firms develop technologies and corresponding capabilities (Chen et al., 2014, 2016; Jha et al., 2016; Leong et al., 2016). It has highlighted location choices and the need for supportive infrastructure (Pitelis, 2012; Spigel and Harrison, 2018), noting that business ecosystems attract members via experimentation and interaction (Overholm, 2015; Pera et al., 2016), while platform ecosystems evolve with the leader’s dynamic capabilities, capacity to mitigate tensions (Helfat and Raubitschek, 2018; Wareham et al., 2014), pluralism and knowledge sharing among members (Mantovani and Ruiz-Aliseda, 2015; Toh and Miller, 2017; Vakili, 2016). In studying ecosystem emergence, Jacobides et al. (2018) identify modularity and firms’
proactive effort as necessary conditions. However, firms' involvement in the genesis of business and platform ecosystems makes it difficult to isolate the emergence of those ecosystems from industry emergence.\(^2\) Besides, with very few exceptions (e.g., Dattée et al., 2018), this research has not focused on how ecosystems come about. Dattée et al. (2018) examine how a firm steers a collective process for envisioning a blueprint for its ecosystem, withholds resources under uncertainty, and secures its share of the created value. These insights cannot inform the study of innovation ecosystems in which firms play a limited role at the emergence phase, and where the challenge is not the orchestration of firm-centric value capture, but the pooling of national resources by government and university actors to establish the needed technological infrastructure for innovation. Unlike business and platform ecosystems, innovation ecosystems typically call for the intervention of the government and academia that can furnish the needed infrastructure. However, most of the research on innovation ecosystems sets aside the question of emergence and focuses on post-formation dynamics that take place after commercialization has begun (e.g., Adner and Kapoor, 2010, Mantovani and Ruiz-Aliseda, 2015; Tiwana et al., 2010). This research explains how an established ecosystem overcomes technological bottlenecks as it transitions across technology generations (Adner and Kapoor, 2010, 2016; Hannah and Eisenhardt, 2018), and how its structure changes as new entrants introduce disruptive technologies (Ansari et al., 2016).

The few studies on the emergence of innovation ecosystems identify the roles of different stakeholders in this phase (Dedehayir et al., 2018; Pekkarinen et al., 2020) and underscore the availability of technological infrastructure and engineering expertise, such as in the form of national labs (Best, 2015) and accelerators (Goswami et al., 2018; Wright and Drori, 2018). This research alludes to the need for a technological infrastructure and identifies different stakeholders that promote the innovation ecosystem but does not explain how this infrastructure emerges in the first

\[^2\] A tangential literature on industry evolution studies how firms anticipate and lead technological changes (e.g., Moeen and Agarwal, 2017; Tushman and Anderson, 1986) and converge on a dominant product design (Suarez, Grodal, and Gotopoulos, 2015). This literature identifies industry life-cycle phases (e.g., Abernathy and Clark, 1985) and the firms that operate in them (e.g., Hannan and Carroll, 1995) as well as those that enter nascent markets (Navis and Glynn, 2010; Santos and Eisenhardt, 2009). Imprinting theories (e.g., Marquis and Tilsik, 2013; Romanelli, 1991) posit that conditions at the emergence phase persist, while scientific discovery, an unmet need, or grand challenge trigger industry incubation (Agarwal, Moeen, Shah 2017). Finally, research on industry clusters alludes to geographical agglomeration of firms which is driven by heredity and spinoffs that shape industry evolution (Klepper, 2010). This literature does not directly inform our inquiry because an industry refers to a collection of firms that produce a particular good for a market (Tirole, 1988). In contrast, innovation ecosystems often cut across industry boundaries and lack a coherent set of products, firms, and customers. For example, nanotechnology can be applied in a variety of industries, with research conducted in various scientific disciplines. Most importantly, firms take part in subsequent phases of evolution, with limited involvement in the emergence of an innovation ecosystem, so studying their characteristics and actions is premature.
place and assumes that the ecosystem architecture is self-reinforcing (e.g., Best, 2015; Mantovani and Ruiz-Aliseda, 2015). It does not attend to the core issue of the dynamics that enable such ecosystems to emerge, and thus it falls short of identifying the pitfalls that may prevent the ecosystem from emerging. In sum, scholars have begun to study conditions for the evolution of innovation ecosystems, unpack the characteristics of evolution phases, and identify the actors that shape it. Nevertheless, there remains a missing link between the discovery of a technology and the emergence of the innovation ecosystem that supports its commercialization (e.g., Perkmann et al., 2013). How an innovation ecosystem emerges remains an unresolved puzzle (Autio and Thomas, 2014). Our study offers insights into the underlying dynamics in this understudied emergence phase.

METHODS

Research setting

We follow an inductive approach for qualitative analysis of a longitudinal case study (Corbin and Strauss, 1990; Gioa et al., 2013; Suddaby, 2006) of the nano ecosystem in Israel during its emergence phase. Nanotechnology refers to science, engineering, and technology conducted at the nanoscale level, i.e., 1 to 100 nanometers. It has applications in disciplines such as chemistry, biology, physics, and materials science. The multidisciplinary nature of this technology and its applications ensures that the underlying processes are not linked to a particular industry. Nanotechnology has been developed in an ecosystem that primarily involves university research centers rather than firms (Avenel et al., 2007; Lavie and Drori, 2012). Being mostly small-to-medium sized, Israeli firms tend to fund only scientific projects that could yield immediate applications, and thus were not involved in the emergence phase: “then, both the initiative and the activities were exclusively academic”[3] “The industry is not deeply involved. Few small firms were established. The industrial development is very limited.”[1] An interviewee elaborated: “The industry needs to become more scientific and adopt advanced technologies that are typically found in universities... there are no large firms,... no research labs. There is a gap between the point to which you can bring university research and the point from which the industry can take this forward. In nanotechnology, this gap is very noticeable because...the timeframes are very long and a much greater level of sophistication is needed.”[1] Hence, our context is suitable for studying an innovation ecosystem as opposed to a business or platform ecosystem and for isolating its emergence phase from processes ascribed to industry evolution.

Nanotechnology was introduced to the Israeli scientific community in 1989 with the purchase of an atomic force
microscope by the Israel Science Foundation (ISF). During the 1990s, funding was scarce, and the needed investment was beyond the capacity of government ministries. This prompted the president of the Israel Academy of Sciences and Humanities (IASH) to establish a Forum for Research and Infrastructure (FRI) in 1997. In 2001, FRI appointed the Maydan Committee to assess the prospects for nano, identify needed infrastructure, examine possibilities for cooperation, and recommend actions. The program was set for $300M, and FRI appointed the Israel Nanotechnology Advisory Board (INAB) to prepare a plan for nano research infrastructure. The Israel National Nanotechnology Initiative (INNI) Board was appointed in 2003 to oversee this initiative. The Ministry of Science and Technology (MOST) challenged FRI but realigned in 2005. FRI raised less than $10 million from its members’ budgets by 2004. That year, however, the Technion university received $26 million from the Berrie Foundation with matching funds from the Technion and the government. In 2006, FRI approved the Triangle Donation Model (TDM) for funding nano initiatives based on the Technion’s model. The $220 million budget was allocated also to Bar-Ilan University (BIU), Tel-Aviv University (TAU), Hebrew University of Jerusalem (HUJI), Ben-Gurion University (BGU), and the Weizmann Institute. Without statutory authority, INNI oversaw the distribution of funds, monitored the research centers, developed and enforced procedures. In 2012, the second nano program was launched to further build the infrastructure needed for supporting the university research programs and achieving the commercialization goals. The five-year budget was set at $180 million, and the TDM was altered. The second program directed universities toward applied research in Focal Technology Areas (FTAs), and the universities hired “golden-egg hunters” to promote commercialization.

Vibrant and multidisciplinary nano communities evolved in the six universities, featuring graduate programs, seminar series, and conferences as the ecosystem’s activities continued to grow: the number of nano scientists in the six centers increased to 482 in 2011, and then to 587 in 2016; between 2007 and 2016, the number of junior scientists and post-docs increased from 132 to 2,925, and the number of graduate students increased from 700 to 9,609; the number of published articles increased from 1,783 to 14,015; the number of joint university-industry projects funded through the Ministry of Industry and Trade (MITL) increased from 196 to 2,025; the number of patent applications increased from 207 to 1,931, of which 819 were granted during that period; the number of commercial “success stories” (e.g., commercially used patents, transferred knowledge) also increased, from 66 to 321; the investment in nano equipment increased from $40 million to $157 million, with the total funding received from research grants, government,
and industry reaching $897 million; equipment utilization increased to 39 percent, and by 2017, 140 nano startup firms had been initiated mostly by university scientists, of which 109 survived. These outcomes demonstrate the achievement of the commercialization goals of the innovation ecosystem. Figure 1 depicts these emergence trends by 2016.

Data collection and analysis

Our data covers the Israeli nano ecosystem from 1989 through 2016, when the second national nano program ended. We relied on a variety of comprehensive data sources, triangulating across them (Eisenhardt, 1989) to compile a rich historical narrative of ecosystem emergence. Table 2 describes our data sources and their use in the inductive analysis. Our analysis followed five steps: (1) developing a chronology of events, (2) temporal bracketing, (3) identifying emerging constructs, (4) categorization, and (5) developing a theory of ecosystem emergence (See online appendix)

FINDINGS AND THEORY BUILDING

Our findings reveal that in the arising bottlenecks process, inefficient bureaucracy and resource constraints create barriers and conflicts that delay the ecosystem's emergence. The ecosystem begins to emerge as these impediments are subdued by the unblocking process, in which metamorphosis and transition to coopetition enable the actors to pursue joint interests, coordinate actions and pool resources. In parallel, the shaping process introduces enabling and governing mechanisms that legitimize the ecosystem, accelerate, and direct its emergence.

Arising of organizational bottlenecks

Nearly two decades passed between the purchase of the nanoscale microscope and the establishment of nano centers. During that time, nano received scant attention from policymakers, and the scientific infrastructure was underdeveloped. Our evidence reveals how ineffective bureaucracy and resource constraints inhibited the ecosystem's emergence.

Ineffective bureaucracy

Five bureaucratic inefficiencies created organizational bottlenecks that hindered the emergence of the nano ecosystem at the outset. First, we identified fragmentation, i.e., a separation of functions and responsibilities across organizational actors. In particular, government ministries operated as silos, each pursuing its own goals while “haggling for their share of the budget.” University scientists were also fragmented, dispersed across separate departments, with minimal cross-departmental communication. Even when working on similar problems, they avoided collaboration in hope of winning recognition: “University A is working on it, and also University B. Do they talk to each other? No! One has the
bolt. One has the nut. And a third has the lockwire and adhesives to lock them in place. And yet no one is talking to each other. Everyone wants to receive a Nobel Prize on their own."[4] In cases where collaboration might have evolved naturally, such as between chemistry and physics departments in a university, it seemed that there was a “fence around the building, with a ‘Do Not Disturb’ sign.”[6] Thus, although nano is interdisciplinary and requires collaboration, the “integration of many different technologies into one platform was very unnatural,”[2] and research remained largely within disciplines. An effort to build the infrastructure for nano failed because the fragmentation of government ministries with conflicting agendas, much like the fragmentation within and across universities, hindered cooperation and coordination of related tasks that were needed for promoting this national endeavor.

Second, actors exhibited rigidity, that is, inflexibility with respect to organizational objectives, structures, and tasks. Budgetary constraints and legal advisors were often blamed for the rigid bureaucracy at government ministries. Consequently, no project could be performed beyond the narrow mandate of each ministry. Ministries dismissed attempts to change the status quo by shifting responsibility: “You approach the MITL with an important national initiative, and they say ‘it is none of my business, talk to the Council for Higher Education (CHE), talk to the Ministry of Science.’”[10] This rigidity created barriers that inhibited substantial cross-departmental collaborative effort by government ministries. Similarly, university scientists revealed rigidity, refusing more applied research: “We conduct research, reach some results, and then have two options: either leaving everything in the drawer, or trying to make a startup. But the second option requires more time and intellectual effort than many of us are willing to invest...For us, the criteria are first and foremost scientific”[11]; “Scientists don’t want to be service providers to industry”[35]; “Scientists do what they want, and we are proud of this.”[30] This rigidity reveals an inherent conflict that sets a barrier for collaboration.

Third, actors displayed myopia, i.e., short-term or narrow focus. Most ministries did not consider long time horizons and planned only as far as the next election: “If a ministry wants to do something that is longer than one year and needs to commit to scientists and to industry, they cannot do it.”[10] This myopia resulted in a failure to furnish the required scientific infrastructure and capital for nano. There was “no way for the government to set national priorities for [large infrastructure] projects.”[10] Similarly, scientists were narrowly focused on their research agenda, paying limited attention to applications: “The thing that interests academic researchers is to...prove their research question and publish the results...receive international recognition, climb the academic ladder.”[37] Many scientists “don’t want to be bothered”[6].
Thus, the majority of nano scientists showed no interest in commercialization. This conflicted with the stated mission of the government, which imposed bureaucratic barriers and failed to invest in nano infrastructure.

Fourth, actors experienced discoordination, i.e., an impaired ability to orchestrate joint activities. Whereas fragmentation implied that a responsibility was split across actors, discoordination meant that these actors could not align their actions, which was more consequential. For instance, ministries were so unaccustomed to collaboration that working together was “mission impossible.”[^34] Although several forums such as the Ministers’ Forum for Science and Technology involved multiple ministers, “It is unreal. Nothing gets decided there. Each minister comes with pre-cooked decisions, or objects to someone else’s pre-cooked decisions…Because it is formal, everyone represents his or her ministry. Everyone is against everyone else.”[^10] Thus, it was challenging for the ministries to coordinate national R&D. This was compounded by MOST’s inability to orchestrate national R&D because it was “too small a player in the Israeli R&D ecosystem. There are giants, such as the military, the CHE, and the Chief Scientist at the MITL. So when the MOST tried to take over, it just did not work: ‘a small mouse cannot tell lions what to do.’ They just kick it or ignore it.”[^10] The lack of ministerial coordination left unresolved conflicts and mounted barriers for the ecosystem. For example, when a ministry failed to furnish funds and operations halted, an INNI board member donated $17,000 from his personal funds, and noted: “Getting several government offices to work together is an impossible mission…If the behemoths in Jerusalem [i.e., government officials] will not solve the problems we have here and this terrible mess continuous, we’ll all live abroad and that’s it.”[^4] Similarly, scientists were discoordinated, remaining within their disciplines and failing to launch interdisciplinary forums, centers, and conferences. There were “no strategic collaborations”[^6] between scientists and industry, so knowledge failed to transfer. This discoordination reinforced conflicts and barriers.

Fifth, there was an administrative void, i.e., no one was assigned the responsibility for the specific organizational task of supporting the national nano initiative. Ministries lacked an overall responsibility for building the required infrastructure. While the MOST was officially responsible for setting direction for national R&D initiatives, no one was responsible for building the R&D infrastructure, with ministries lacking the authority or power to do so. There was no “council that would look ahead and say what is needed…there are limited resources, so what should be prioritized?”[^10] Likewise, no one was assigned the responsibility for nano infrastructure at the universities. The research endeavors of nano scientists in the late 1990s were largely unorganized. Efforts to organize were all “bottom-up…but did not gain
much traction.[27] This void in the government and universities imposed friction and barriers for coordination.

In sum, to emerge, innovation ecosystems require the formation of an alignment structure that supports coordination among a set of actors with distinct agendas (Adner, 2017). However, the ineffective bureaucracy, characterized by fragmentation of organizational units, rigidity of their agenda and myopic outlook, coupled with discoordination and unassigned responsibilities, perpetuate conflicts and impose organizational barriers that lead to inertial paralysis. Unlike studies that underscore technological barriers and the need for technical expertise as impediments for ecosystem emergence (e.g., Best, 2015), our theory points to ineffective bureaucracy that makes it difficult to establish the infrastructure for the emerging ecosystem, regardless of the actors’ goodwill. Accordingly, these organizational bottlenecks inhibit the emergence of the innovation ecosystem.

Resource constraints

Resource constraints, exemplified by a shortage of resources, prioritization problems, and the scattering of resources, also created bottlenecks for emergence. First, shortage, i.e., insufficiency of resources allocated for performing organizational tasks, was a major challenge for the emergence of the ecosystem: “some national needs require heavy infrastructure and thus become orphans with no one able to fund them. The needed budget is so large that everyone is scared off.”[10] Although the MITL was eager to fund a nano program in the early 2000s, it lacked the necessary budget. Similarly, the MOST, which was “the last in line to receive funds, kept getting its budget reduced.”[6] Neither ministry could fund a nano initiative on its own, which imposed a major barrier for the ecosystem. At the universities, funds were so scarce that “everything was kept on a small flame,”[3] and research progress was slow. There was a critical mass of about 120 nano scientists, but the limited funding hindered their initiatives. The meager resources allocated to nano led PhD graduates to leave the country for positions abroad. Those scientists who returned had to both “limit their dreams and work very slowly,”[3] e.g., building a new lab took three years instead of one. Attempts to organize nano scientists in research centers barely took off because of the severe shortage of resources. Finally, even if scientists saw commercial potential, the lack of funding for maturing the technologies for industry use created an impassable barrier: the “distance between a research finding and a commercial application is tremendous…Many projects are stuck …because universities and their technology transfer offices lack the needed funds.”[37]

Second, there was \textit{suboptimal prioritization} of objectives for resource allocation. No ministry prioritized national
R&D that crossed ministerial boundaries or was willing to put forth any funds for it. Each asked, “Why me? It is important, so why should I be the one to fund it? Someone else should fund it. And then these initiatives never get funded.” Projects that bridged industry and academia were left orphaned: “The industry says that it is not their business, so these projects never get funded.” Even when ministries sought funds to meet national goals, they were unable to secure them. The Budgeting Department at the Ministry of Finance, which is in charge of planning, “does not release funds because so many ministers come to them and ask for money for the same things that they just don’t know what the priority is. They sit like a brooding hen on its eggs all day, and say, ‘Why waste money?’” Hence, overarching goals were not set, and allocation of scarce resources was suboptimal. The inability of ministries and universities to agree on priorities for resource allocation created barriers for initiatives supporting the emerging ecosystem.

Third, there was scattering of the scarce resources across actors: “each ministry and public body, such as the CHE, has its own budget and funds the activities that are important for its sector.” Each minister represented his or her ministry and “[fought] against everyone else over the budget, trying to secure as much money as possible at the annual government budgeting meetings.” The scattering of resources and funding battles among ministries created barriers for a substantial government-wide initiative in nano. Resources were also scattered across university departments. The high equipment price makes scattering harmful: “the microscope in the building next door costs $4 million. Just one microscope!” Thus, most nano scientists in the 1990s could not purchase equipment. In sum, resource constraints hindered the ecosystem’s emergence.

In sum, we reveal that insufficient, dispersed, or suballocated resources deprive the emerging ecosystem of necessary support. Prior research has identified resource accessibility as a necessary condition for ecosystem evolution (e.g., Spigel and Harrison, 2018), but we allude to nuanced bottlenecks that concern not only resource scarcity, but also the difficulty in orchestrating resources (Sirmon et al., 2011), whose suboptimal configuration across actors prevents their accumulation and allocation to support the emergence of the innovation ecosystem.

Overall, in the aforementioned process, our theory suggests that ineffective bureaucracy and resource constraints amplify actors’ conflicting interests and create organizational bottlenecks. These bottlenecks do not concern the nature of technology, i.e., “components that constrain the overall growth or performance of the ecosystem due to poor quality, weak performance, or scarcity” (Hannah and Eisenhardt, 2018, p. 3164). Rather, they refer to a broader set of
organizational impediments characterizing the ecosystem members and their interrelations. Moreover, these bottlenecks do not merely constrain the growth of the ecosystem, but rather hinder its emergence. Prior research mostly focused on identifying the complementary roles of actors that enable the emergence of the ecosystem (e.g., Dedehayir, et al. 2018), assuming away their conflicting interests and bureaucratic hurdles, which create bottlenecks. Either ineffective bureaucracy or resource constraints can create organizational bottlenecks, yet their combination makes these bottlenecks more challenging to unblock. By introducing these bottlenecks, our theory provides the missing link between technological discovery and ecosystem emergence (Moore, 1993). We direct attention to organizational impediments rather than to technological or economic barriers, which have received attention in theories of ecosystem emergence (Adner and Kapoor, 2010, 2016; Jacobides et al., 2018; Tiwana et al., 2010). Thus, we explain why an ecosystem may fail to emerge despite technological discovery, or why its emergence phase may be prolonged.

Unblocking organizational bottlenecks

Barriers and conflict ascribed to ineffective bureaucracy and resource constraints inhibited the emergence of the ecosystem for two decades. In turn, we reveal how metamorphosis and transition to coopetition enabled actors to align their interests and pool resources, and hence dislodge the ecosystem from its immutable position. Metamorphosis created the organizational setting for unblocking the bottlenecks, while coopetition motivated that unblocking.

Organizational metamorphosis

Organizational metamorphosis refers to the creation of a new organization that is derived from an antecedent organization, which continues to exist. Unlike that established organization, it manages to perform a certain task due to its altered organizational traits. Informalizing metamorphosis yields an informal arrangement, whereas formalizing metamorphosis leads to a statutory institution. Through these metamorphoses, actors overcame the organizational bottlenecks. The most important instance of informalizing organizational metamorphosis was the 1997 creation of FRI, which emerged from the dysfunctional organizational silos of the government. The president of IASH “looked for an ad hoc solution”[10] – an unofficial forum for planning national initiatives that would fill the administrative void, overcome the fragmentation, and facilitate coordination. Relying on his academic gravitas and outsider status, he gathered the “knights of national R&D”[11] and established FRI. These “knights” were the directors of the ministries with stakes in national R&D, including the MOST and MITL. At FRI, the members functioned as a collective, leaving aside their official
roles, participating not because of an official requirement, but “because they want[ed] to push forward projects that they think are important.”[10] The forum deliberated on the R&D infrastructure and pooled the members’ governmental resources. FRI was an informal body without statutory authority; its power derived from its members’ official roles and resources. The members resisted several attempts to turn FRI into an official governmental unit, “realizing that bureaucracy has ruined everything”[11] and that “voluntary action increases the personal responsibility of FRI members and their freedom to make decisions and is thus superior to formal organization.”[39] Hence, operating without official status enabled FRI members to circumvent their ministries’ rigidity. Members could envision projects beyond their individual roles, and “do what they felt was truly necessary without being coerced or forced by any government decision, but out of an honest will to cooperate.”[11] Once they decided on an initiative, they pooled their resources, which allowed for prioritization and more optimal resource allocation. As MOF’s representative was also a member of FRI, this ministry no longer felt compelled to “brood over their resources.”[10] They could coordinate activities and prepare a long-term budget. Once members committed funds to support an initiative and formed a steering committee to oversee the project’s execution, FRI discontinued its involvement. However, because FRI’s tenure did not end at each election cycle, it was able to set a long-term agenda. Some attribute FRI’s success to its unofficial nature: “This is why it all works. Over-formalization and over-regulation are big problems...An informal organization is a prerequisite for entrepreneurship. It is impossible to initiate something really new when you are chained up within an existing framework.”[11] In sum, from the ministerial silos emerged an informal organization that transcended these silos while retaining their representation. It filled an administrative void and enabled government actors to cooperate, align interests, and pool resources, in an effort to support the emerging nano ecosystem.

The formalizing organizational metamorphosis, instead, enabled efficient implementation of new procedures, as in the case of granting an official status to INAB. This ensured that the initiative would not fall victim to bureaucratic inefficiencies and resource constraints after FRI’s withdrawal: “we had to ensure that there was continuity to this initiative. Once FRI closed the deal and funding was in place, we turned INAB from an advisory committee to FRI to a body that continues to professionally advance the initiative. Formally, their statutory power is from the Chief Scientist at the MITL.”[10] INNI was another official organization established to fill the void in the initiative’s operations. FRI which funded and was responsible for managing the nano initiative created INNI to overcome bureaucratic hurdles while
leveraging the authority of the Chief Scientist of the MITL. As an outsider, INNI was free to “kick and scream whenever bureaucrats fell asleep.”[38] In the case of universities, a formalizing metamorphosis involved establishing official nano research centers to regulate and govern the spontaneous initiatives of various academic faculties under one roof.

Hence, informalizing metamorphosis transcends established structures and puts in place organizational infrastructure that enables actors to overcome barriers, align interests, and pool resources. In turn, formalizing metamorphosis reintegrates these initiatives and introduces official authority for their implementation using resource pooling and alignment. Overall, metamorphosis enables actors to unblock the bottlenecks that impeded the ecosystem’s emergence. First, actors establish informal voluntary organizations that are nimbler than the formal organizations from which they emerged, thus relaxing constraints. Once these voluntary organizations achieve their mission, the actors re-create formal statutory organizations that are reintegrated into the bureaucracy from which they originated. This notion departs from the traditional idea of metamorphosis: “change in organizational structure is occasionally punctuated by abrupt, major transformations which sharply distinguish one period of organizational history from another” (Starbuck, 1971, p. 275). Although Starbuck’s notion refers to a sudden organizational change as evident in the switch from government ministries to FRI, unlike this idea, the old organizational form survives the metamorphosis and continues to coexist with the new organizational form. The same actors that created bottlenecks that hindered the emergence of the ecosystem are involved in dislodging the ecosystem and unblocking these bottlenecks. The ineffective bureaucracy gives way to informal organizations that manage to overcome its deficiencies and enable both governmental and university actors to agree on a common agenda and pool their resources.

Whereas prior research on ecosystem evolution suggests that the internal organization of the ecosystem may change as a result of shifting bottlenecks (Hannah and Eisenhardt, 2018), our theory reveals how change in the internal organization can lead to unblocking some bottlenecks. In particular, switching to an informal structure via which actors interact, enables them to subdue bureaucratic constraints and dislodge from inert positions, while identifying common interests and defining a collective agenda. Unlike models of ecological change (Hannan and Carroll, 1995; Tushman and Anderson, 1986) in which superior organizations replace deficient ones, following the metamorphosis, the ineffective bureaucracy prevails in parallel to the informal organizations that adopt a new set of practices. Once the need arises to implement the agreed-upon decisions, a formalizing metamorphosis transplants the informal units back
into the bureaucracy, resulting in an organization that enjoys both nimbleness and authority. Such formalizing metamorphosis overcomes the caveat of interstitial spaces that enable actors to temporarily escape from an established organization and experiment, but fail to institutionalize new practices (Furnari, 2014). Since the antecedent organization is left intact and the same actors are involved in the new organization, conflict is mitigated. Instead of sacrificing the collective identity when striving for legitimacy (Lee et al. 2017), metamorphosis promotes a shared identity.

Transition to coopetition

While organizational metamorphosis explains how actors organize to align interests and pool resources, transition to coopetition explains the impetus to do so. Coopetition entails simultaneous competition and cooperation between actors (Bengtsson and Kock, 2000). Our evidence reveals how cooperation emerged despite the inherent preliminary state of competition, giving way to distinct types of coopetition: coopetition for resources, direction, administration, and identity.

Coopetition for resources refers to the pooling and sharing of resources for which actors compete. Intense coopetition for resources was a distinctive characteristic of FRI members: “each member represents his or her ministry and everyone fights with everyone else for money,”[10] a fight that peaked at annual budgetary meetings in which “the decisions on how much each ministry receives were completely political.”[10] However, once they convened as FRI members, they pooled millions of dollars: “we cannot afford to duplicate resources…It is crucial to have specific goals to avoid fragmentation…An infrastructure project such as nanotechnology is so expensive that one ministry simply cannot fund it.”[142] Complicating matters was the fact that FRI members bring in funds “from their operating budgets. They do not receive any additional funds from the government for FRI’s initiatives,”[11] so the allocated funds come at the expense of other initiatives: “it is not a trivial matter, to take money that was supposed to support industries and give it to universities, but that is what the Chief Scientist at the MITL did.”[11]

Coopetition for resources also transpired among universities and scientists. Universities competed with one another “intensely…over the best faculty, which was a critical asset.”[14] Universities also made efforts to attract donors and competed with one another over funding. In particular, the Berrie Foundation’s donation to the Technion motivated other universities to raise funds for their nano centers: “there was intense competition between universities…everyone jumped on board the nanotechnology ship despite the high price. No university could afford to be left out of the game and have another university become the leader in nano.”[11] At the same time, they could not afford the required
equipment for nano research, so they had to share that equipment. Also, given the community’s small size, universities “shared” international speakers and visiting scholars who were invited to conferences and seminars instead of “hiding them only at one university.”[27] The university centers collaborated and helped each other in times of need, such as when equipment malfunctioned. Coopetition was most evident among scientists, who competed for recognition and over research funds. At the same time, they collaborated on research projects to obtain needed resources—financial, equipment, and knowledge assets: “When we engage in collaboration, we reach out to teams that possess skills or equipment that can contribute to our research…collaboration has become one of the hallmarks of the nanotechnology culture.”[16] Thus, competition for resources among government ministries and within and among research centers was accompanied by cooperation that enabled the pooling of resources and alignment of interests.

A second novel form of coopetition is coopetition for direction, wherein actors with conflicting interests and objectives strive for a unified mission. Competition was the natural state of government ministries that battled over policies but could not concur on building a national R&D infrastructure. In contrast, FRI members participated in only those projects that “they viewed as important and aligned with their self-interest,”[11] so they were highly motivated to influence their direction, and cooperation was essential to that aim. Thus, despite their adversarial relationships, FRI members cooperated to achieve a unified mission for the nano initiative. To ease tensions and facilitate shared objectives, FRI involved all the ministries with stakes in R&D and purposely stayed out of the limelight, so “no one’s ego got hurt.”[10] Consequently, FRI members could agree on major initiatives. Nonetheless, efforts to craft a unified mission were often fraught with conflict, primarily between the MOST and the other FRI members. Although the MOST was unable to coordinate the actions of larger organizations, its leadership felt that this was their duty: “they do not have money, but they have the pretension to tell everyone what to do.”[10] Yet, despite this competitive tension, the MOST eventually cooperated in funding the nano initiative because it did not want to be left out: “someone who doesn’t pay does not have the right to decide anything.”[36]

Coopetition for direction also transpired between INNI and the universities. INNI wanted to commercialize nano, whereas universities sought to promote academic research. At the same time, universities needed resources for nano research, while INNI could not promote industrial applications without the universities’ insights. Thus, INNI and the universities fostered a complex relationship that eventually enabled them to better align their missions. Universities
appreciated the support: “what INNI did is amazing...It made a real revolution.”[21] But given their divergent goals, tensions mounted: Scientists appreciated INNI’s support but resented being micromanaged. INNI sought to direct scientists, who were accustomed to academic freedom, toward specific industrial applications, outlining the main industry they should focus on. For instance, INNI wanted BGU to focus on irrigation technologies simply because of their physical proximity to the Negev Desert. But “with all due respect, no one can walk into the backyard of one of the scientists and start telling her, ‘research this, don’t research that.’ At the end, we have academic freedom.”[21] Some scientists even claimed that “INNI came in to steal the good people and the good ideas from the universities.”[17] Thus, while appreciative of INNI’s funds, scientists tended to view INNI as “a group of bureaucrats”[30] who tried to control them. A center director noted: “On the one hand, INNI is our evaluator...they make sure we don’t waste the money they gave us. On the other hand, it really wants to advance the industry. There is a kind of collaborative dance: when someone evaluates you, you treat them in a certain way; if you march together and strive to achieve joint goals, then the relationship is different. These two roles do not always go together, but INNI managed to walk between the drops.”[27] This “walk” entailed seeking a middle ground between misaligned directions, which could still serve the agendas of both parties. Hence, the tension between basic and applied research gradually decreased.

Additionally, coopetition for direction transpired between the university research centers. The collaboration between nano centers strengthened while “friendly competition” transpired between them. For example, the Center Directors’ Forum met to manage the competition and define the “rules of the game”[25,27] for the FTAs, advocating a rule whereby scientists would only be allowed to submit one proposal. During the FTA application period, directors circulated the proposal summaries and consulted with their counterparts on how to manage the process. Finally, coopetition for direction was evident across university departments. Their modus operandi was to compete over control and direction of the nano centers. For example, at the Weizmann Institute, the head of the chemistry department served as the director of the nano center, but the chemistry and physics departments, while both involved in nano research, acted “like two political parties.”[3] To ease these tensions, nano research at Weizmann was dispersed, and central management was largely nonexistent, with individual scientists and departments enjoying freedom. At TAU, the nano center was managed by a board with representatives from four departments. In all these cases, university departments cooperated to set direction for the nano initiative despite their traditional rivalry. Coopetition for direction prompted goal
alignment and the pooling of resources in the government and universities.

Another unique form of coopetition was coopetition for administration, defined as coordinated joint action involving competing administrative functions. Unlike coopetition for direction that centers on setting a joint agenda, coopetition for administration concerns the means for pursuing that agenda. Among FRI members, coopetition for administration revolved around disagreements about how to oversee the nano initiative. For instance, while taking part in FRI, the MOST criticized FRI’s administrative procedures for assessing proposals and for operating without an accountant or legal counsel to ensure proper control. It also objected to FRI’s slow pace of making decisions and notifying universities about their proposals for nano centers. The MOST’s frustration with and contempt toward FRI’s administrative leadership was probably rooted in the MOST’s inability to execute its formal role: “the conflict between the Ministry of Science and FRI is built-in”[11] because of the bureaucratic antecedents; the ministry “sees FRI as a competitor but still cooperates.”[11] For the other FRI members, jointly executing the nano initiative was a smoother process. This cooperation among natural competitors is “an example of goodwill of the remaining good bureaucrats...FRI members understand that to advance matters in these difficult conditions is only through cooperation. This way, they secure some of their interests.”[11] In sum, coopetition for administration also helped actors’ pool resources and align their interests.

Finally, a novel form of coopetition for identity refers to distinct actors creating a shared identity that coexists yet conflicts with their original identities. For example, FRI members had dominant individual identities, stemming from their distinct government ministries, but at FRI they created a shared identity. They experienced constant shifts between this collective identity and the ministerial identities. Although they funded the nano initiative as FRI members, the directors of the ministries who participated in FRI signed documents with their official roles, since FRI had no statutory standing. FRI members often experienced a “split personality, whereby at one time they lead their own ministries, but at another time, they are members of a collective whose interests are not always aligned with their individual interests.”[11] Coopetition for identity also transpired at the universities. In the 1990s, no one used the term “nanotechnology,” and research was carried out in biology, chemistry, physics, etc. But as the term became popular, scientists began to develop a “nanotechnology identity” in addition to their disciplinary identity. They identified themselves as “nano” scientists “because it was a lot sexier than their traditional disciplines, and many more resources were allocated to nano.”[29] Thus, as the resource constraints began to ease, more scientists adopted the “nano identity,” and the nano
community became more vibrant, with seminar series, conferences, study programs, and events that lured more scientists to shift their identities to "nano." The notion of coopetition for identity is distinct from that of transitional identity whereby existing identities are dissolved as the organization transitions into an emerging new identity (Clark et al., 2010). In coopetition for identity there is no dissolution of the original identities which continue to coexist, and thus impose a tension with the new identity. This tension can be more pronounced than in the case of multiple identities that individuals maintain by virtue of their distinct roles which impose conflicting demands (Ramarajan, 2014). Here, the identities relate to the same role, and the tension is internally induced rather than imposed by external stakeholders. In sum, coopetition for identity, much like other forms of coopetition, motivated competing actors, ranging from scientists and universities to government ministries, to align their interests and pool resources, thus unblocking the bottlenecks.

Whereas organizational metamorphosis furnishes the organizational setting for dislodging the nano ecosystem from constraining conditions that hindered its emergence, our theory reveals that the transition to coopetition motivates the actors to subdue traditional rivalries and align their divergent interests and pool scattered resources. This transition is prompted by the actors' realization that competition has prevented them from implementing their private agendas and a compromise is inevitable. In turn, the four facets of coopetition enable the actors to maintain their separate interests while collaborating in the pursuit of a common goal, that is, the promotion of the innovation ecosystem. We show how by striving toward a shared mission, pooling their resources, and aligning their interests around this common agenda, the actors overcome bureaucratic hurdles and resource constraints. Hence, coopetition is not limited to sharing resources among competing ecosystem members that strive for cost savings and synergies (Mantovani and Ruiz-Aliseda, 2015). Rather, such coopetition for resources among government ministries and universities is complemented by alignment of mission, coordinated action, and even a shared identity, which are essential for the emergence of the innovation ecosystem. Prior research on coopetition has focused on firms that simultaneously cooperate and compete (e.g., Bengtsson and Kock, 2000, 2014; Bouncken et al., 2015; Gnyawali et al., 2008) by leveraging their counterparts' resources, competencies, and knowledge (Bouncken et al., 2015; Gast et al., 2014), and creating value via a “win-win” solution (Liu, 2013). We inform this research that has focused on coopetition for resources by demonstrating that coopetition can apply more broadly to the simultaneous competition and cooperation for direction, administration, and identity of the actors. Coopetition is more profound than assumed and involves convergence of identities and meeting
of the minds, which precede the alignment of behaviors and pooling of resources. Recognizing the superiority of the shared mission over the actors’ private objectives is a prerequisite for resource pooling in the emerging ecosystem. Hence, the transition to coopetition begins with a cognitive process which is followed by an operative process.

Additionally, we extend this research, which has been confined mostly to the interfirm context, by shifting focus to the ecosystem context that encompasses government and academic institutions. We also complement research that explains how coopetition drives innovation (Bouncken and Kraus, 2013; Cassiman et al., 2009; Gnyawali and Park, 2009; Ritala, 2012) by linking coopetition to the notion of ecosystem emergence. Finally, coopetition research has neglected the phenomenon’s dynamic and process aspects (Hoffmann et al., 2018; Hung and Chang, 2012). We reveal the process by which coopetition motivates joint interests and the pooling of resources in the emerging ecosystem, which in turn enable actors in the ecosystem to unblock organizational bottlenecks ascribed to resource constraints and bureaucratic hurdles. In our theory, organizational metamorphosis and the transition to coopetition serve as complementary catalysts for unblocking these bottlenecks, with the former furnishing the organizational infrastructure that enables the unblocking and the latter creating the impetus to collectively pursue such unblocking.

Shaping the ecosystem

Crossing the bureaucratic barriers, aligning interests, and pooling resources were necessary for unblocking the bottlenecks, but our evidence reveals a third process in which enabling and governing mechanisms (Adler and Borys, 1996) facilitate and direct the emergence of the ecosystem, while legitimizing its operations. For instance, these mechanisms were pivotal in the promotion of applied research at the universities: “Think of what INNI did to the universities as a dog race. They put a rabbit at the front. They told the universities, ‘if you don’t want to, you don’t need to participate; you can keep doing what you were doing before, but you will not get the rabbit.’”[24] In order to get the rabbit (funding), universities had to follow the rules. INNI and other actors promoted the emergence of the ecosystem through a series of carrots and sticks, i.e., enabling and governing mechanisms. Both types of mechanisms enhanced the legitimacy of the ecosystem, with the former accelerating its growth and the latter directing its evolution.

Enabling mechanisms

Our evidence reveals four *enabling mechanisms* that facilitated ecosystem emergence: roles, allocation models, forums, and evaluation. *Roles* refer to organizational positions, such as the INAB directors and the golden-egg hunters...
at the university centers. For instance, the golden-egg hunters sought “brilliant scientific ideas that can be commercialized, but are left unattended by unaware professors.”\cite{33} INNI encouraged university centers to create this role and to fund it. Each center had its own interpretation of the hunter’s role and the means to get these elusive golden eggs to the market. For example, the Technion’s hunter focused on increasing the industry’s involvement in the center and its use of equipment. The HUJI’s hunter screened research projects and focused on young and promising scientists seeking to commercialize their research, “holding their hands”\cite{35,37} along the way. At BIU, the hunter screened the projects, found an excellent one, and left the center to launch a startup firm based on that project. The hunters directly contributed to commercial activity, including patents, licensing agreements, and startup firms: “Requesting that we hire people to help with commercialization, really advanced commercialization here. Without the funds to hire hunters, there is no doubt that there would have been less commercial success.”\cite{27} New roles, such as the hunter, served as enabling mechanisms that legitimized applied university research and accelerated commercialization. These roles supplement traditional roles in ecosystems such as ecosystem leader and complementor (Dedehayir et al., 2018).

The second enabling mechanism was allocation models, which refer to procedures and arrangements for resource allocation. The most important allocation models were the TDM and the FTA program. The TDM was the model by which all the university nano centers were funded, i.e., equal contributions from the university, a donor, and the government. Because competition for resources among universities was fierce, when universities realized that the Technion had received $26 million from the government, “it was as if an earthquake [had] struck the country, and everyone was asking, why the Technion and not us?”\cite{5} Subsequently, FRI extended this funding model to all other universities, which sought funds to establish nano centers. This model advanced FRI’s mission to develop nano infrastructure in Israel. The TDM was the most significant enabling mechanism that accelerated the emergence of the nano ecosystem: “It is clear that had it not been for the TDM, the nanotechnology initiative would have progressed much slower.”\cite{10} The TDM encouraged universities to raise matching funds and submit proposals, which dramatically accelerated universities’ efforts to establish nano centers. Through the TDM, the universities built a research infrastructure that attracted scientists from abroad: “A promising young nano scientist came to HUJI and said that he got everything he needs for his research. He doesn’t need anything else.”\cite{10}

Another important allocation model was the FTA. INAB’s directors were unsatisfied with the progress of the centers
in the first nano initiative. Although INAB no longer challenged scientists’ right to choose their research subjects, INAB was only willing to fund research with commercial applications: “if scientists want to study the effects of rays of sun on bee reproduction, they can do so on their own time, not [with] taxpayers' money.”[4] However, INAB realized that trying to coerce scientists to study specific topics was ineffective. To better align the universities with the initiative’s mission, INAB introduced the FTA model: “the FTAs were expected to bridge between high-quality, mission-oriented research in…academia and innovative product development programs in the industry.”[42] Funds for infrastructure were distributed equally to universities, whereas the FTA funds were allocated on a competitive basis in areas such as nanophotonics, nanomedicine, and nanocoating. Hence, the FTA accelerated the emergence of the ecosystem by calling for research with immediate commercial applications that were relevant to the industry. The funding was based on competitive bids but fostered cross-university collaborations. Per INAB’s report, the FTA successfully produced tangible outcomes such as products, prototypes, applications, and startup firms, while facilitating collaborations of scientists from different universities (Jortner et al., 2017). Hence, allocation models served as enabling mechanisms that brought nano research to the forefront and accelerated the commercialization of the technology.

A third enabling mechanism was forums that created common platforms for interaction, such as the Center Directors’ Forum. INNI convened the first meeting of the directors’ forum, but the directors continued to meet in order to decide “how to deal with INNI, their common enemy.”[21] The forum sought to influence the centers’ direction rather than blindly follow INNI’s direction, so it met “whenever there was something they needed to protest or agree on.”[30] The forum enabled nano centers to coordinate initiatives, share resources, and influence the allocation of funds. The bi-annual Nano Israel Conference was another forum initiated by INNI and INAB board members to serve the entire nano community and supplement events held at the centers: “there is collaboration. It really helps us bring conferences to the country. It helps that we have a large number of researchers overall. We try to create that kind of collaborative atmosphere.”[27] Consequently, the conference grew, and the number of participants nearly doubled by the fifth gathering in 2016. Forums such as the Center Directors’ Forum and the Nano Israel Conference signaled the importance of nano research and increased the legitimacy of the emerging ecosystem: “a real nanotechnology community was created. We nurture this all the time through seminars...we have an annual social event...and we have a world-class degree program. The conference attracts over two hundred scientists, and it is very lively.”[28] Hence,
forums served as enabling mechanisms that legitimized nano research by facilitating exchange of ideas and research findings, as well as promoting collaborative initiatives, which accelerated the emergence of the ecosystem.

Finally, the evaluation mechanism refers to professional assessment of alternative courses of action by authorities. An example is the Maydan Committee’s feasibility study which set the stage for the national initiative and was critical for the emerging ecosystem. The committee members were selected to provide legitimacy: “They have two roles. The first role is to assess. The second is for us to use their reputation. Their names market this whole business.” Hence, the Maydan Committee prompted FRI members to invest an unprecedented amount by national standards. Another evaluation mechanism was INAB’s assessment of the university proposals for nano centers. After evaluating the Technion’s proposal, INAB created a uniform methodology to evaluate proposals, which accelerated investments and thus advanced the emergence of the ecosystem. Working in tandem, the enabling mechanisms—roles, allocation models, forums, and evaluation—contributed to the legitimacy of the ecosystem and accelerated its emergence.

Governing mechanisms

Besides the enabling mechanisms, we identified four governing mechanisms—monitoring, sanction, public scrutiny, and regulation—that, while not directly enhancing commercialization, shaped the emergence of the ecosystem and directed its evolution trajectory. Monitoring refers to tracking and governing sponsored activities to ensure the meeting of milestones and objectives. In addition to requiring the centers to submit annual reports, INNI monitored the centers on an ongoing basis. Its representatives visited the centers, developed informal ties, and consulted them: “formally, INNI is the controller of nano activities on behalf of the government, and they do their work faithfully”; INNI “is our controller…a watch-dog…they inspect our activities, give us grades and scores.” INNI’s monitoring often led to resentment: “INNI’s management comes from the industry and the money comes from various government ministries…so they think they have a say in what should be done in academia…They come in and ask us what we are working on, whether it is applied, why it is not applied.” INNI sought to align the centers with its mission, so to enable scientists to proceed with research, “the center directors acted as buffers between INNI and the scientists.” Still, by monitoring the centers, INNI managed to incentivize commercialization and legitimize applied nano research.

In cases in which INNI was discontented with the centers’ performance, it applied sanctions. Sanction refers to the administration of penalties for deviation from stated objectives. An example is the penalties that INNI imposed on
BGU and the Weizmann Institute in 2009 after they failed to fully comply with its requirements. INNI cut their funding by $200K and $1 million, respectively. This sanction was enough to “make everyone realize that INNI means business.”[34] The threat of sanctions worked “extremely well because everyone knew that if they do not behave as they should, well,…the fact is that center directors who did not cooperate in the beginning are cooperating today.”[4] Whereas the BGU director was dismissed and the center was completely restructured following INNI’s penalty, Weizmann “straightened up a bit and pretended”[30] to make changes. To advance its agenda, “INNI often pushed and threatened indirectly that if the centers do not comply, then they will not receive funding for the next five years…and so everyone complied.”[37] As a result, sanctions directed the university centers toward more applied research and legitimized it: “today, there are scientists, and…their number is growing, who are aware of the importance of commercialization. When they conduct their research, they already think about its applications.”[37]

Another governing mechanism is public scrutiny, which refers to auditing of practices vis-à-vis regulation or social norms. An example was the MOST’s attempt to terminate FRI by appealing to the State Comptroller in 2004: “there is no room for FRI to exist in its current form, because [the MOST with its authority over the] the National Civil R&D Committee was the only official body authorized to make recommendations to the government about R&D infrastructure and the execution of projects in science and technology.”[42] This attempt did not yield the results the MOST had hoped for, since the State Comptroller’s support reinforced FRI’s legitimacy. Another example concerns the complaints of university presidents following FRI’s decision to match Russell Berrie’s donation to the Technion. The other university presidents complaining about improper procedures of releasing funds without an open call for proposals. Internal debate concerning equal opportunities led FRI to offer similar criteria for assessing proposals by other universities. This scrutiny promoted the legitimacy of the TDM and a more egalitarian approach in subsequent funding decisions, thus directing the evolution path of the emerging ecosystem.

The last governing mechanism is regulation, which refers to design and legislation of policies, rules, and procedures. As the overseer of the nano initiative, INNI “decided on the policies and rules of the nano centers[28]…INNI’s unofficial mission was to not only bring money to universities and develop the centers, but to change the way the universities go about their business with regard to infrastructure and working with industry…INNI built the nano centers and was heavily invested in the universities, and tried through that to force the universities to start acting in a certain
way… They told me straight up, ‘we put so much money in this infrastructure, you are not going to pull the plug now.’”[24] These rules and procedures were geared toward inducing commercial activity. Scientists appreciated the contribution of INNI’s instituted regulations to ecosystem emergence: “In spite of all of my criticisms of INNI, I have no doubt that all the things they did brought about significant change. It fostered collaboration among the universities and helped raise awareness to nano, even to scientists like me. It was extremely helpful in our dealings with the university administration…They promoted educational programs and other activities that they would not have invested in otherwise.”[32] Hence, much like the other governing mechanisms, the regulation mechanism contributed to the legitimacy of nano research and directed scientists toward more applied research.

The enabling and governing mechanisms directed the ecosystem toward commercialization, accelerated its emergence, and legitimized it. At the universities, everyone realized that some research should be applied: “Back then, doing applied research was not acceptable…Today, everyone is doing applied research.”[29] Whereas enabling mechanisms accelerated the ecosystem’s emergence, governing mechanisms directed it to commercialization.

In sum, releasing the ecosystem from organizational bottlenecks that hinder its emergence is insufficient for accelerating and directing the ecosystem’s evolution. Per our theory, these aims are achieved by introducing enabling and governing mechanisms that correspondingly provide discipline and incentives for ecosystem members, while legitimizing the ecosystem. In the nano ecosystem, an intricate relationship between government and academia harnessed the university centers and motivated scientists to pursue the agenda of ad hoc voluntary organizations such as INNI. Hence, the evolution of the ecosystem gains traction due to new funding models and programs, novel organizational positions, and forums, which serve as enabling mechanisms. These enabling mechanisms are accompanied by governing mechanisms—i.e., public scrutiny, regulation, monitoring by authorities, and sanctions—that further align the actors with the desired trajectory of evolution. By uncovering specific mechanisms that accelerate and direct the emergence of the ecosystem, our theory goes beyond prior work that has described the process of ecosystem evolution without alluding to the means by which the ecosystem progresses from one phase to the next (e.g., Chen et al., 2014, 2016; Jha et al., 2016; Leong et al., 2016; Moore, 1993). Further, besides their primary roles in accelerating and directing the emergence of the ecosystem, both enabling and governing mechanisms help legitimate the ecosystem. This legitimation is essential for securing support for the ecosystem’s evolving norms, values, and power.
structures (Lindgren et al., 2015), while ensuring its continued growth (Lee et al., 2017; Wry et al., 2011). More broadly, the use of these mechanisms extends their application from the context of hierarchies (Adler and Borys, 1996) to that of ecosystems. Our theory suggests that enabling and governing mechanisms that have been studied in the organizational context can be deployed to direct the emerging innovation ecosystem in a trajectory that deviates from the tendencies of actors, as long as these mechanisms take unique forms that are tailored to the ecosystem context.

DISCUSSION

Innovation ecosystems have received much attention, but we know little about their emergence (Autio and Thomas, 2014) as technological discovery cannot explain how national actors come together despite inherent conflicts and organizational bottlenecks. Past research has focused on post-emergence dynamics (e.g., Adner and Kapoor, 2010) or identified conditions for emergence (e.g., Leydesdorff and Etzkowitz, 1998), without explaining how these ecosystems come about (Perkmann et al., 2013). Our study explicates the evolution of innovation ecosystems by exposing how the technological infrastructure endogenously emerges from the interplay of impeding and facilitating processes, in which actors coopetitively interact while seeking arrangements that promote scientific innovation.

Our inductive theory acknowledges organizational bottlenecks that delay the emergence of the ecosystem. Whereas the discovery of technological bottlenecks can explain the emergence of platform ecosystems (Shipilov and Gawer, 2020) or hinder the innovation ecosystem’s growth in subsequent phases (Hannah and Eisenhardt, 2018), it is organizational bottlenecks that transpire in its emergence phase. We reveal how resource constraints and deficient bureaucracy mount organizational barriers and reinforce conflict, which prevent the ecosystem from emerging years after the technology was discovered. For the ecosystem to emerge, these impediments need to be dismantled via metamorphosis and transition to coopetition of the ecosystem’s members, who align their interests and pool resources. The metamorphosis creates the setting for dislodging the ecosystem from stagnation, while coopetition furnishes the impetus for unblocking bottlenecks. The emerging informal organizations engage the same actors, but unblock the bottlenecks attributed to their formal incarnations, which were rife with scattered resources, misaligned interests, and conflicting agendas. Our theory suggests that the pace and direction of ecosystem emergence are correspondingly shaped by enabling and governing mechanisms that actors design and institute, which also enhance the ecosystem’s legitimacy. Hence, unlike studies that characterize the ecosystem at each phase (Jha et al., 2016; Leong et al., 2016),
we underscore the tension between impeding processes that hinder the ecosystem’s emergence and those dislodging it from its immutable position. We show how their relative dominance determines the prospects for ecosystem emergence, while the path for emergence is paved by mechanisms that promote and shape its emergence trajectory.

Our theory overcomes the challenge of studying the emergence phase given its transitory and contextual nature (Phaal et al., 2011) by identifying fundamental processes, and thus departs from studies that describe the characteristics of technologies and firms that interact at the growth and maturation phases of the innovation ecosystem (Adner and Kapoor, 2016; Chen et al., 2014, 2016). By studying innovation ecosystems, it also complements research that explains how firms remove technological bottlenecks in business ecosystems (Jacobides et al., 2006; Masucci et al., 2019). By relating to organizational metamorphosis and coopetition, which have not received attention in the context of innovation ecosystems, we complement research on ecosystem evolution that identifies the actors (Dedehayir et al., 2018) and resources that drive emergence (Spigel and Harrison, 2018). Further, our theory explains how organizational metamorphosis dislodges the ecosystem from stagnation ascribed to bureaucratic impediments and resource constraints imposed by actors with conflicting interests. In so doing it goes beyond prior research which tends to overlook impairing conditions and thus to underestimate the apparatus needed to support the ecosystem’s emergence. Scholars have acknowledged that diverging interests of ecosystem members impose coordination challenges in subsequent phases of evolution (e.g., Jacobides et al., 2018). Our theory, instead, explains how such conflict impedes the emergence of the ecosystem by invoking divergent evolutionary paths, e.g., science versus commercialization. Our theory also identifies enabling and governing mechanisms that provide thrust, steer the ecosystem, and fine-tune its evolution trajectory. Yet, the relative importance of specific mechanisms and the applicability of certain elements of ineffective bureaucracy may vary across ecosystems, and thus merit further attention in future research.

Overall, our inductive theory contributes to the broader literature on ecosystems by highlighting aspects of ecosystem strategy, organization, and operation that are interwoven in the emergence phase. We conclude that in an innovation ecosystem that lacks a leading firm (e.g., Adner, 2017), that strategy entails coopetition to align interests and overcome resource constraints. We also extend the notion of ecosystem structure as a set of positioned actors that undertake interlinked activities, by alluding to metamorphosis that creates these positions and interlinkages. This is essential for overcoming bureaucratic hurdles and prompting coordination in the emerging ecosystem. Finally, we allude
to ecosystem operation, by identifying mechanisms that can accelerate and direct the ecosystem’s evolution. Overall, our theory not only identifies processes that influence the emergence of the innovation ecosystem, but also uncovers their interplay. Specifically, it suggests that ineffective bureaucracy and resource constraints form mutually reinforcing yet sufficient conditions for creating organizational bottlenecks that impede the emergence of the ecosystem. These conditions correspondingly undermine the alignment structure and instigate competitive tension among government and university actors. In turn, organizational metamorphosis establishes the setting for unblocking these bottlenecks and aligns the actors’ interests, while the transition to coopetition motivates the actors to overcome their conflicting interests and to pool their resources in the unblocking process. Finally, our theory suggests that governing mechanisms direct the evolution trajectory and enabling mechanisms prompt commercialization, thus accelerating the ecosystem’s emergence and the fulfillment of its value proposition.

In our inductive theory, coopetition is essential for motivating the unblocking of organizational bottlenecks. We highlight a neglected aspect of coopetition that is evident not only among firms but also in academia and the government, which are inherently competitive. The alignment of interests and pooling of resources do not merely result from informal coalitions (Stevenson et al., 1985), but rather entail a delicate process via which the actors strive for a common mission, create a shared identity, and coordinate actions, prior to pooling their resources. The “meeting of the minds” and the formation of mutual perceptions based on identification with the common goal and agreed-upon procedures are organic elements for coordinating activities and sharing resources. Whereas coordination and resource sharing have been central to research on coopetition (e.g., Bengtsson and Kock, 2014), such research has not considered the other facets of coopetition. Our inductive theory reveals their essential role in ecosystem emergence and perhaps also for rivals in business and platform ecosystems (e.g., Jones et al., 2021; Khanagha et al., 2022). The transition from competition to coopetition begins with behavioral aspects relating to identity and direction, proceeds with organizational aspects relating to administration, and concludes with strategic aspects encompassing resource pooling. Our theory further suggests that metamorphosis transcends bureaucratic structures, while coopetition provides the impetus for coordination. Their interplay instigates the emergence of the ecosystem by correspondingly furnishing a nimble organizational structure and aligned purpose that drive coordination and pooling of resources.

Our theory complements the view of ecosystems as an institutional field that encompasses network participation,
governance systems, and shared logic that characterize value creation in ecosystems post emergence (Thomas and Autio, 2014). Furthermore, our theory extends research on national innovation systems (e.g., Nelson, 1993) that studies established policies for promoting R&D, by explaining how relations among institutions and organizations are formed and national policies are negotiated in the emergence phase of particular innovation ecosystems. Nevertheless, established national systems and policies fall short of supporting innovation in this context, while organizational design and regulation are insufficient to account for the emergence of the innovation ecosystem. Our theory also complements research on industry evolution, which offers life-cycle models to describe industries and firms at different phases of evolution (e.g., Klepper, 1997; Malerba, 2007; Phaal et al., 2011). By unpacking the ecosystem emergence phase that precedes industry formation, we shift focus from firms’ entry, adoption, and commercialization of technologies to actors’ interactions that foster the progression from the technology’s discovery to its application. We complement research that explains how in the incubation of an industry, actors focus on solving technological problems “by significant sharing of knowledge through formal and informal channels” (Agarwal et al., 2017: 297). We do so by revealing the lack of cooperation and knowledge sharing, the failure of formal systems, and the unblocking of these bottlenecks during ecosystem emergence. Finally, our theory proposes processes that enable actors to modify impeding conditions and thus counter the path dependence noted by imprinting theories (e.g., Ellis et al., 2017; Marquis and Tilcsik, 2013).

In conclusion, the emergence of an innovation ecosystem entails interdependent actions of actors in the government and academia. We enhance understanding of this phenomenon by identifying the resource constraints and organizational conflicts that impede the emergence of the ecosystem as well as the processes that unblock these bottlenecks, facilitate the ecosystem’s emergence, and direct its evolution. Our theory elucidates the underlying processes, strategies, and mechanisms that enable the emergence of innovation ecosystems. By uncovering the social system that guides action, we complement frameworks that highlight structure and affiliation in ecosystems (Adner, 2017; Shipilov and Gawer, 2020). We explain how the actors’ interactions promote the ecosystem via organizational arrangements and allocation of resources (Van de Ven and Garud, 1989) that furnish the infrastructure for the ecosystem (Hinings et al., 2017). Thus, our study contributes to literature on the nature of ecosystems (Adner, 2017; Jacobides et al., 2018) by revealing processes that help ecosystems bring innovation from the lab to the market.

Our theory can guide policymakers, universities, and entrepreneurs in identifying bottlenecks that delay
commercialization and in shaping the evolution of innovation ecosystems. We underscore the role of informal voluntary organizations in overcoming bureaucratic hurdles and advocate cooperation among competing actors that strive for a shared mission. We then identify specific practices that can be adopted to facilitate commercialization in an innovation ecosystem following a technological discovery. Hence, to facilitate the emergence of innovation ecosystems, policymakers can strive to unblock bottlenecks by engaging in organizational design that mitigates fragmentation, rigidity, myopia, discoordination, and administrative void in organizational units that support the ecosystem. They can also combine and prioritize resources from different units. If these measures are insufficient to unblock the bottlenecks, the policymakers can strive for organizational alignment by pursuing metamorphosis of established organizational units and by proactively enhancing cooperation at multiple levels, as illustrated in our study. Finally, governing and enabling mechanisms can be selectively adjusted per the particular ecosystem context in order to put in place regulation, monitoring, roles, and forums among other mechanisms that can facilitate the emergence of the innovation ecosystem.

Admittedly, alternative pathways for the emergence of innovation ecosystems may be observed in other contexts, so we discuss the generalizability of our theory in the Online Appendix and call for further research. We conclude that organizational metamorphosis and coopetition can play a role in different types of ecosystems in which interfirm networks and various stakeholders support the ecosystem (e.g., Planko et al., 2019). Moreover, we see value in studying various dimensions of coopetition—coopetition for resources, direction, administration, and identity—in various contexts. Nevertheless, business and platform ecosystems may follow different genesis scenarios given firms’ involvement and their reliance on readily available commercial applications (e.g., Jha et al., 2016; Leong et al., 2016). Finally, our theory does not portray the dynamics in more mature innovation ecosystems that have evolved beyond commercialization (Chen et al., 2014, 2016). Nevertheless, despite these limitations, we offer novel theory that sheds new light on the question of how innovation ecosystems emerge.

Future research can test our inductive theory with a multiple-case study design that documents the emergence of various innovation ecosystems in different countries. Such design can incorporate longitudinal analysis of patents, startup firms, and commercialized products as indicators of successful emergence. Comparisons to failed emergence attempts can corroborate the roles of metamorphosis and coopetition in dislodging from organizational bottlenecks. An intriguing question concerns the possible roles of metamorphosis and coopetition in subsequent phases of evolution.
and in other types of ecosystems. Another opportunity relates to extending research on coopetition by examining its identity, direction, and administration aspects that precede resource pooling. Needed is a better understanding of these prerequisites for transitioning from competition to coopetition in ecosystems and other interorganizational contexts.

REFERENCES

Electronic copy available at: https://ssrn.com/abstract=4620965

ONLINE APPENDIX

Data Collection and Analysis

During the years 2007-2016, we conducted 41 in-depth semi-structured interviews with key actors, including directors of university nano centers, prominent university scientists, officials and representatives of governmental and non-governmental organizations, and founders and executives of firms. The interviewees (see Table 1) were identified using a combination of snowball sampling and leads suggested by the secretary of FRI, to encompass all the actors that were directly involved in the emergence of the ecosystem. By including the key informants in all the universities and organizations in the ecosystem we ensured representativeness of our sample. We continued to conduct interviews until no new informants were suggested to us and saturation was reached, resulting in stable construct coding and content (Guest et al., 2006). The interviews, lasting 45-90 minutes, were recorded and transcribed. Additionally, we collected extensive archival data from university research centers and governmental and non-governmental organizations such as FRI and INNI. We obtained the annual reports of nano university centers detailing their activities, publications, patents, scientists, educational programs, and commercial success; INNI’s annual reports and five-year report, and INAB’s final report, which reviews the ecosystem’s evolution (Jortner et al., 2017); FRI’s meticulous private documentation, including meeting minutes, memos, calls for proposals, letters, emails, materials submitted by universities, reports, government documents, and news articles; and patent applications and publications of nano scientists in Israel. Finally, we surveyed 298 nano scientists in university research centers during 2007–2008. The survey provided information on their resources, collaboration networks, and research progress. See Table 2 for a summary of our data sources and their use in this study. Using our data, we identified the actors in the ecosystem and discerned their interrelationships. Our inductive theory development followed five steps as detailed below.

Step 1. Developing a chronology of events

We first constructed a comprehensive historical narrative that documents the chronology of events during the emergence phase by triangulating our data sources and integrating perspectives of various actors (e.g., Dalpiaz et al., 2016). Our narrative offered observations that were later used for discerning theoretical constructs and categories (Lincoln and Guba, 1985; Strauss and Corbin, 1998). To gain an initial understanding of the chain of events, we coded them according to the actors involved and then plotted a visual map of cause-effect relations between events (Langley,
(e.g., appointment of the Maydan Committee led to the report that advocated the first nano program). An initial set of 251 events was reduced to 146 events after merging instances of the same event relating to multiple actors. The causal map helped to coherently interpret the actors' roles, their actions, interrelations, and corresponding consequences that hindered or promoted the ecosystem’s emergence. Following Gehman et al. (2013), we identified two primary stakeholder groups: (1) governmental and non-governmental organizations with overlapping responsibilities (marked “G”), and (2) scientists and university research centers (marked “U”). Our narrative identified the timing of events, with the causal map helping to recognize events that triggered transitions.

Step 2. Temporal bracketing

Our analysis of the historical narrative (e.g., Dalpiaz et al., 2016; Tripsas and Gavetti, 2000) revealed continuity in activities within certain periods and discontinuities across these periods (Langley, 1999). Accordingly, four transition points were identified in the emergence of the ecosystem: (1) the purchase of the atomic force microscope by the ISF in 1989, following which the seeds for the nano ecosystem were planted; (2) FRI’s appointment of the Maydan Committee in 2001, after which an initiative has been taken to establish the nano ecosystem; (3) the Berrie Foundation’s donation to the Technion in 2005 following which the first nano program got underway; and (4) the launch of the second program in 2012, which lasted until 2016, the year that marked the achievement of commercialization goals, the conclusion of the emergence phase and the transition to the next phase of ecosystem evolution. We divided our narrative into these four periods and further separated it into narratives relating to the primary stakeholder groups (“G” and “U”). This resulted in a set of eight embedded units of analysis (Yin, 2003) that document the events, actions, outcomes, and perspectives of actors per each period and stakeholder group.

Step 3. Identifying emerging constructs

We conducted within-case analysis (Eisenhardt, 1989) of these eight units, in which each author first read the case independently. Through triangulation across archival data, documented events and interview transcripts that inform the chronological narrative in each unit, and following iterative rounds of deliberation and coding, the underlying constructs were inductively revealed. We went back and forth within and across these case units, in search for recurrent evidence on instances of the emerging constructs (Corbin and Strauss, 1990; Yin, 2003). These iterations converged on a set of mutually exclusive and comprehensive constructs (Eisenhardt, 1989), providing fine-grained understanding of their
content and the guiding principles that they enacted (Gioia et al., 2013). There was a high overlap (91.7%) in the constructs emerging for the “G” and “U” units, but their prevalence varied across time periods. All the constructs invoked by the interviews were related to concrete events, which helped understand how these events are linked and facilitate interpretations (Strauss and Corbin, 1998) (see Table 3).

Step 4. Categorization

After converging on 22 constructs (see Table 3), we searched for similarities and differences across them, in an effort to abstract to a smaller set of higher-level theoretical categories that can furnish explanations for ecosystem emergence. This aggregation enables us to link the constructs to the overarching theory (Gioia et al., 2013). Through deliberation, six categories emerged from our inductive process: ineffective bureaucracy, resource constraints, organizational metamorphosis, coopetition, enabling mechanisms, and governing mechanisms. Following this process, we revisited the literature to determine if our emerging categories hint at new concepts or have precedents in extant research.

Step 5. Developing a theory of ecosystem emergence

In the final step, we brought together the six categories and their respective constructs, and by going back and forth between the emerging theory and our narrative, we generated a unifying theoretical framework. Subsequently, we revisited the literature again to refine our terminology. For example, we adopted the term bottlenecks (Baldwin, 2018; Hannah and Eisenhardt, 2018) when referring to impediments created by ineffective bureaucracy and resource constraints. Our theory consists of processes that serve as the building blocks of our inductive theory. We drew multiple representations of the interrelationships between these processes and their constituent constructs, recursively checking for consistency with the data (Locke, 2001). This enabled us to generate new insights. Following feedback that we received from the interviewees we refined the resulting inductive theory (Figure 2 presents these processes in blocks with their effects shown on the arrows).
Generalizability of The Inductive Theory

Our inductive theory may not apply to all types of ecosystems and at subsequent evolution phases. More research is needed to generalize our findings to other innovation ecosystems and other countries, as alternative pathways for ecosystem emergence may be identified. Further, in our theory, some nuances may manifest depending on the severity of organizational bottlenecks. For instance, in the U.S., the emerging nano ecosystem did not encounter major setbacks and managed to leverage a cooperation among 20 federal departments and agencies with interests in nano research, development, and commercialization. The U.S. government was also more proactive and effective in recognizing the national priority of this technology and allocating the needed resources to fund it using its established administration (Leonard, 2017). Because the bottlenecks were marginal, the needed organizational metamorphosis was limited and the transition to coopetition was straightforward. In contrast, the emerging nano ecosystem in the Netherlands echoed the processes documented in our study, with the Dutch Study Centre for Technology informally laying the foundation for a national research agenda as early as 1998 but facing substantial bottlenecks. The Dutch Royal Academy of Sciences intervened in the political process in 2003, with a national research program, NanoNed, established to run from 2005 to 2010 in three nano centers, with a budget of 235M€, aiming to bridge the gap between university research and commercialization (Van Est et al., 2012). In this case, the metamorphosis and transition to coopetition were fundamental. Overall, the needed unbottling efforts should be proportional to the severity of the bottlenecks, with insufficient metamorphosis and transition to coopetition likely to prolong or delay the emergence of the ecosystem. Moreover, our theory is most potent for innovation ecosystems that call for government involvement in closing the gap between technological discovery and commercialization. In such ecosystems, the technology originates in universities or government agencies before firms step in. Other examples include 3D printing (Xu et al., 2018), renewable energy and cleantech (Cooke, 2011; Davies, 2013), genomics, bioinformatics (Fando and Klavdieva, 2018; Gisler, et al., 2011), and biomedicine (Li and Garnsey, 2014). When government intervention is unnecessary and the technological gap is limited, other emergence paths may transpire. For instance, entrepreneurial ecosystems involving new ventures and venture capital investors may emerge to promote commercialization in the private sector (Spigel & Harrison, 2018). Finally, besides these contextual factors, national culture may play a role, as in the case of the Israeli culture, which is entrepreneurial, open, and flexible, thus supporting bottom-up initiatives and organizational metamorphosis.
References

Table 1: Interview schedule

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Name Initials</th>
<th>Position</th>
<th>Institution</th>
<th>Interview Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prof.</td>
<td>U.S.</td>
<td>Center Director</td>
<td>Technion [U]</td>
<td>2/04/2007</td>
</tr>
<tr>
<td>2</td>
<td>Prof.</td>
<td>U.S.</td>
<td>Center Director</td>
<td>Technion [U]</td>
<td>2/20/2007</td>
</tr>
<tr>
<td>3</td>
<td>Prof.</td>
<td>O.C.</td>
<td>Center Director</td>
<td>TAU [U]</td>
<td>2/08/2007</td>
</tr>
<tr>
<td>4</td>
<td>Mr.</td>
<td>D.V.</td>
<td>BOD Member</td>
<td>INNI, INAB [G]</td>
<td>2/20/2007</td>
</tr>
<tr>
<td>5</td>
<td>Mr.</td>
<td>I.P.</td>
<td>MAGNET Manager</td>
<td>MITL [G]</td>
<td>3/07/2007</td>
</tr>
<tr>
<td>8</td>
<td>Prof.</td>
<td>N.T.</td>
<td>Scientist</td>
<td>Technion [U]</td>
<td>4/06/2007</td>
</tr>
<tr>
<td>10</td>
<td>Prof.</td>
<td>J.Z.</td>
<td>Chairman</td>
<td>IASH [U], FRI [G]</td>
<td>11/19/2007</td>
</tr>
<tr>
<td>11</td>
<td>Mr.</td>
<td>M.N.</td>
<td>Secretary</td>
<td>FRI [G]</td>
<td>11/22/2007</td>
</tr>
<tr>
<td>13</td>
<td>Prof.</td>
<td>U.B.</td>
<td>Center Director</td>
<td>HUJI [U]</td>
<td>1/15/2008</td>
</tr>
<tr>
<td>14</td>
<td>Mr.</td>
<td>I.M.</td>
<td>BOD Member</td>
<td>INAB [G]</td>
<td>12/28/2008</td>
</tr>
<tr>
<td>16</td>
<td>Prof.</td>
<td>D.S.</td>
<td>Scientist</td>
<td>Technion [U]</td>
<td>4/06/2009</td>
</tr>
<tr>
<td>17</td>
<td>Mr.</td>
<td>D.V.</td>
<td>BOD Member</td>
<td>INNI, INAB [G]</td>
<td>2/12/2012</td>
</tr>
<tr>
<td>18</td>
<td>Dr.</td>
<td>M.W.</td>
<td>BOD Member</td>
<td>INNI, INAB [G]</td>
<td>2/12/2012</td>
</tr>
<tr>
<td>19</td>
<td>Prof.</td>
<td>M.H.</td>
<td>Scientist</td>
<td>Weizmann [U]</td>
<td>10/31/2012</td>
</tr>
<tr>
<td>20</td>
<td>Prof.</td>
<td>H.M-Y.</td>
<td>Chief Scientist</td>
<td>MOST [G]</td>
<td>10/01/2012</td>
</tr>
<tr>
<td>21</td>
<td>Dr.</td>
<td>O.C.</td>
<td>Administrative Director</td>
<td>BIU [U]</td>
<td>11/01/2012</td>
</tr>
<tr>
<td>22</td>
<td>Prof.</td>
<td>Y.S.</td>
<td>Scientist</td>
<td>TAU [U]</td>
<td>11/01/2012</td>
</tr>
<tr>
<td>23</td>
<td>Mr.</td>
<td>B.B.</td>
<td>Communications Director</td>
<td>INNI [G]</td>
<td>11/07/2012</td>
</tr>
<tr>
<td>24</td>
<td>Prof.</td>
<td>Y.H.</td>
<td>Center Director</td>
<td>TAU [U]</td>
<td>11/11/2012</td>
</tr>
<tr>
<td>25</td>
<td>Prof.</td>
<td>D.P.</td>
<td>Center Director</td>
<td>HUJI [U]</td>
<td>11/12/2012</td>
</tr>
<tr>
<td>26</td>
<td>Prof.</td>
<td>I.T.</td>
<td>Center Director</td>
<td>Technion [U]</td>
<td>12/02/2012</td>
</tr>
<tr>
<td>27</td>
<td>Prof.</td>
<td>A.Z.</td>
<td>Center Director</td>
<td>BIU [U]</td>
<td>12/06/2012</td>
</tr>
<tr>
<td>28</td>
<td>Prof.</td>
<td>O.S.</td>
<td>Scientist</td>
<td>HUJI [U], Collplant Ltd. [I]</td>
<td>11/15/2012</td>
</tr>
<tr>
<td>29</td>
<td>Prof.</td>
<td>S.M.</td>
<td>Scientist</td>
<td>HUJI [U]</td>
<td>11/25/2012</td>
</tr>
<tr>
<td>30</td>
<td>Prof.</td>
<td>Y.P.</td>
<td>Center Director</td>
<td>Weizmann [U]</td>
<td>11/26/2012</td>
</tr>
<tr>
<td>31</td>
<td>Prof.</td>
<td>Y.G.</td>
<td>Center Director</td>
<td>BGU [U]</td>
<td>1/16/2013</td>
</tr>
<tr>
<td>32</td>
<td>Prof.</td>
<td>M.G.</td>
<td>Center Director</td>
<td>BGU [U]</td>
<td>2/21/2013</td>
</tr>
<tr>
<td>33</td>
<td>Dr.</td>
<td>M.W.</td>
<td>BOD Member</td>
<td>INNI, INAB [G]</td>
<td>4/22/2013</td>
</tr>
<tr>
<td>34</td>
<td>Mr.</td>
<td>D.V.</td>
<td>BOD Member</td>
<td>INNI, INAB [G]</td>
<td>4/22/2013</td>
</tr>
<tr>
<td>35</td>
<td>Mr.</td>
<td>O.D.</td>
<td>Golden-Egg Hunter</td>
<td>HUJI [U]</td>
<td>4/30/2013</td>
</tr>
<tr>
<td>36</td>
<td>Mr.</td>
<td>M.N.</td>
<td>Secretary</td>
<td>FRI [G]</td>
<td>5/01/2013</td>
</tr>
<tr>
<td>37</td>
<td>Mr.</td>
<td>S.O.</td>
<td>Golden-Egg Hunter</td>
<td>TAU [U]</td>
<td>5/02/2013</td>
</tr>
<tr>
<td>38</td>
<td>Prof.</td>
<td>E.B.</td>
<td>Scientist</td>
<td>HUJI [U]</td>
<td>6/01/2014</td>
</tr>
<tr>
<td>39</td>
<td>Mr.</td>
<td>M.N.</td>
<td>Secretary</td>
<td>FRI [G]</td>
<td>7/21/2014</td>
</tr>
<tr>
<td>40</td>
<td>Mr.</td>
<td>I.M.</td>
<td>BOD member</td>
<td>INAB [G]</td>
<td>1/4/2016</td>
</tr>
<tr>
<td>42</td>
<td>Internal FRI Documents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electronic copy available at: https://ssrn.com/abstract=4620965
Table 2: Data sources and their use

<table>
<thead>
<tr>
<th>Data Sources</th>
<th>Use in data analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interviews</td>
<td>(a) Understanding the role of university research in shaping the evolution and conduct of the nano ecosystem; exploring the nature of collaboration within/across nano centers; mapping the relationships between centers and actors such as the government, FRI, INNI, and firms; (b) Understanding the development of the academic field and the relations between scientists and other actors; (c) Understanding the role of government ministries, focusing on processes that hinder/facilitate the emergence of the ecosystem, including policy decisions, division of labor, and resource allocation, as well as inter-agency relations; (d) Understanding processes related to the nano initiative, including informal/formal structures and dynamics, resource allocation, plans, operations, priorities, and relations between actors; (e) Understanding the role of startups and established firms in the commercialization of nano and their contribution to the ecosystem.</td>
</tr>
<tr>
<td>Israel Academy of Sciences and Humanities documents (1990s)</td>
<td>First recognized the topic and led to ISF funds in 1996, targeting early-stage, high-risk, multidisciplinary research (including in the field of nano); provide insights into the background from which the nano initiative was born.</td>
</tr>
<tr>
<td>Maydan Committee Report (2002)</td>
<td>Feasibility study detailing approach for developing nano in Israel, noting past experience, constraints, and prospects; outlines a plan specifying priorities and resources; provides insights into the conditions that led to the nano initiative.</td>
</tr>
<tr>
<td>INNI Annual Reports (2007-2016) and Five-Year Report (2012)</td>
<td>Summarize annual progress of activities and performance of the university centers; 5-Year Report reviews the first five years of the program and evaluates of the plans and performance of centers; offers systematic evaluation of the initial phase.</td>
</tr>
<tr>
<td>INAB Final Report (2017)</td>
<td>Documents and evaluates the development of the nano program from inception to termination of the second nano program; offers systematic evaluation of the initial phase and evolution of the nano ecosystem in Israel.</td>
</tr>
<tr>
<td>Proposals and annual reports of the university nano centers (2007-2016)</td>
<td>Summarize the progress of the centers with respect to logistics and structure of the centers and various measures, e.g., patents, scientific publications, collaborations, purchased equipment, recruitment, and budget. Used in qualitative/quantitative analysis.</td>
</tr>
<tr>
<td>FRI documents and protocols, including private archives of FRI executives, letters, and meeting minutes (2003-2016)</td>
<td>FRI meeting protocols cover processes that led to the creation of the nano program; served for mapping key actors and roles, decision-making process, resource allocation and political scene related to the ecosystem emergence; reveal FRI’s routines and practices for the creation of INNI/INAB, evaluation of nano programs, and negotiations with universities.</td>
</tr>
<tr>
<td>State Comptroller Report (2005)</td>
<td>Assessment of FRI as champion of the nano program; insights into the nature of metamorphosis and the establishment of FRI.</td>
</tr>
<tr>
<td>Government policy documents and reports (2002-2012)</td>
<td>Outline policies and criteria for resource allocation, describe government programs related to nano; served for triangulating information about the nature of governmental bureaucracy and tracing activities related to the emergence of the nano ecosystem.</td>
</tr>
<tr>
<td>Articles from daily newspapers, business magazines and reports on the Israeli nano ecosystem (2002-2016)</td>
<td>Document events and activities related to the emergence of the ecosystem. Information included interviews and reviews of the main actors and their roles, resources, and achievements. Served for triangulating information about key events, government policies, and university centers, and their interplay in the ecosystem.</td>
</tr>
<tr>
<td>Patent data (1975-2016)</td>
<td>Search for USPTO patent applications and granted patents using nano keywords for scientists and centers. Served for understanding the growth trajectory and performance of scientists and university centers; triangulation with other indicators.</td>
</tr>
<tr>
<td>Academic publication data (1975-2016)</td>
<td>Search in ABI INFORMS using nano keywords for scientists. Similar purpose as patent search described above.</td>
</tr>
<tr>
<td>University centers’ websites and scientists’ webpages (2007-2017)</td>
<td>Gathering information about research projects and scientists, including affiliation and tenure for patent/publication search.</td>
</tr>
<tr>
<td>Survey</td>
<td>Studying the characteristics of research projects at the centers, covering factors that shape knowledge creation and application, and various types of collaboration, including the role of internal and external resources available to scientists. The data served for triangulating with other data sources in the qualitative analysis, providing information about resources, collaboration networks, and progress of scientists’ research programs, highlighting cooption from the scientists’ standpoint.</td>
</tr>
<tr>
<td>Construct</td>
<td>Category</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Fragmentation</td>
<td>Rigidity</td>
</tr>
<tr>
<td>"University A is working on it, and also University B. Do they talk to each other? No! One has the bolt. One has the nut. And a third has the lockwire and adhesives to lock them in place. And yet no one is talking to each other. Everyone wants to receive a Nobel Prize on their own."[4]</td>
<td></td>
</tr>
<tr>
<td>"Ministries were highly fragmented, with each haggling for their share of the budget."[20]</td>
<td></td>
</tr>
<tr>
<td>"It seems that there is a fence around the building, with a ‘Do Not Disturb’ sign."[6]</td>
<td></td>
</tr>
<tr>
<td>"You approach the MITL with an important national initiative, and they say ‘it is none of my business, talk to the Council for Higher Education, talk to the Ministry of Science.’"[15]</td>
<td></td>
</tr>
<tr>
<td>"The Budgeting Office at the Ministry of Finance, all the lawyers, they don’t let anyone get any work done around here."[11]</td>
<td></td>
</tr>
<tr>
<td>"We conduct research, reach some results, and then have two options: either leaving everything in the drawer, or trying to make a startup. But the second option requires more time and intellectual effort than many of us are willing to invest...For us, the criteria are first and foremost scientific."[11]</td>
<td></td>
</tr>
<tr>
<td>"Scientists cannot see the academic payoff, they don’t want to be service-providers to industry,"[39] “I am better off writing grants every year than trying to deal with the industry."[14]</td>
<td></td>
</tr>
<tr>
<td>"Scientists do what they want, and we are proud of this."[19]</td>
<td></td>
</tr>
<tr>
<td>"If a ministry wants to do something that is longer than one year and needs to commit to scientists and to industry, they cannot do it."[10]</td>
<td></td>
</tr>
<tr>
<td>"Scientists] don’t want to be bothered. They just want to live their lives and do what they do."[6]</td>
<td></td>
</tr>
<tr>
<td>"Researchers were unaware of the commercial potential of their work, and, even when they were, they lacked the knowledge of how to commercialize it."[17]</td>
<td></td>
</tr>
<tr>
<td>"It is unreal. Nothing gets decided there. Each minister comes with pre-cooked decisions, or objects to someone else’s pre-cooked decisions...Because it is formal, everyone represents his or her ministry. Everyone is against everyone else."[10]</td>
<td></td>
</tr>
<tr>
<td>"Getting several government offices to work together is an impossible mission....If the behemoths in Jerusalem [i.e., government officials] will not solve the problems we have here and this terrible mess continuous, we’ll all live abroad and that’s it!"[4]</td>
<td></td>
</tr>
<tr>
<td>"[There was no] council that would look ahead and say what is needed...there are limited resources, so what should be prioritized?...No one was responsible for building the necessary infrastructure to conduct R&D."[10]</td>
<td></td>
</tr>
<tr>
<td>"INNI makes things happen which government officers within their departmental constraints cannot – one of the reasons is that no one is assigned specific responsibility for this matter."[23]</td>
<td></td>
</tr>
<tr>
<td>"Distance between a research finding and a commercial application is tremendous...Many projects are stuck in this ‘valley [of death]’ because universities and their TTOs lack the needed funds."[37]</td>
<td></td>
</tr>
<tr>
<td>"Due to lack of resources, everything was kept on a small flame. These researchers had to limit their dreams and work very slowly."[10]</td>
<td></td>
</tr>
<tr>
<td>"R&D resources in both industry and academia are dwindling. So what do they do in academia? They distribute meager resources across many fields, and thus [are] unable to move forward."[34]</td>
<td></td>
</tr>
<tr>
<td>"The Ministry of Finance] does not release funds because so many ministers come to them and ask for money for the same things that they just don’t know what the priority is. They sit like a brooding hen on its eggs all day, and say, ‘Why waste money?...If it is important, why should I be the one to fund it? Someone else should fund it.’ And then these initiatives never get funded."[10]</td>
<td></td>
</tr>
<tr>
<td>"If you come to the government with a concrete plan: ‘I will do A and B and in return I expect you to do C,’ then you can get things done. If you come and just ask ‘give, give and give,’ they [government] would say ‘but I don’t have it.”[18]</td>
<td></td>
</tr>
<tr>
<td>"Each ministry and public body, such as the CHE, has its own budget and funds the activities that are important for its sector... Resources are scattered across ministries, such that no ministry could fund substantial infrastructure projects alone."[11]</td>
<td></td>
</tr>
<tr>
<td>"The fact that all Israeli universities entered the nano field resulted in a lateral scattering of talents...Let’s assume that only one university gets it, so in certain aspect[s], such university could be very advanced, but would need the input of scientists in other universities."[17]</td>
<td></td>
</tr>
<tr>
<td>"FRI is a voluntary association within the government...so no one forces anyone to participate. It is not a governmental agency but a loose forum,"[33] "An informal organization is a prerequisite for entrepreneurship. It is impossible to initiate something really new when you are chained up within an existing framework,"[11]</td>
<td></td>
</tr>
<tr>
<td>"Voluntary action increases the personal responsibility of FRI members and their freedom to make decisions, and is thus superior to formal organization,"[39]</td>
<td></td>
</tr>
<tr>
<td>“We had to ensure that there is continuity to this initiative. Once FRI closed the deal and funding was in place, we turned INAB from an advisory committee to FRI into a body that continues to advance the initiative. Formally, their statutory power is from the Chief Scientist at the MITL.”[90]</td>
<td>Resources</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>“In order for the initiative to succeed, there must be someone external to the bureaucratic government system, who is not part of it. This way he can criticize the system without being personally liable…an external guy who can kick and scream whenever bureaucrats fell asleep.”[93]</td>
<td>Direction</td>
</tr>
<tr>
<td>“This [activity] didn’t survive long as the rules became tougher and today you need to work according to the bureaucratic procedures.”[11]</td>
<td>Administration</td>
</tr>
<tr>
<td>“We have wonderful projects that result from cooperation between a physics researcher and a chemist. But each wants the resources to be in his laboratory.”[9]</td>
<td>Identity</td>
</tr>
<tr>
<td>“If a piece of my equipment is broken, I can use the needed piece in another university. We back up one another, and when necessary, we jointly purchase specialized equipment.”[27]</td>
<td>Roles</td>
</tr>
<tr>
<td>“Each member represents his or her ministry and everyone fights with everyone else for money”[94]… “It is not a trivial matter, to take money that was supposed to support industries and give it to universities, but that is what the Chief Scientist at the MITL did…”</td>
<td>Allocation models</td>
</tr>
<tr>
<td>“The purpose of the first role is to assess.”[11] … “FRI’s Chairperson, Jacob Ziv, appointed a professional committee headed related to it because it was a lot sexier than their traditional disciplines, and many more resources were allocated to nano.”</td>
<td>Enabling Mechanisms</td>
</tr>
<tr>
<td>“It is clear that had it not been for the TDM, the nanotechnology initiative would have progressed much slower.”[10] … “If scientists want to study the effects of rays of sun on bee reproduction, they can do so on their own time, not [with] taxpayers’ money.”[4] “…The purpose of the FTAs was to bridge the outcomes of the designated research at the universities and product R&D in the industry…the FTAs served as the basis for startup firms.”[39]</td>
<td>Forums</td>
</tr>
<tr>
<td>“The government couldn’t allocate to the Technion 26M$ without giving equal opportunities to the other research universities.”[11] “The matching model [TDM] raises the bar and creates opportunities.”[27] “…It is clear that had it not been for the TDM, the nanotechnology initiative would have progressed much slower.”[10] “…If scientists want to study the effects of rays of sun on bee reproduction, they can do so on their own time, not [with] taxpayers’ money.”[4] “…The purpose of the FTAs was to bridge the outcomes of the designated research at the universities and product R&D in the industry…The FTAs served as the basis for startup firms.”[39]</td>
<td>Evaluation</td>
</tr>
<tr>
<td>“The conflict between the Ministry of Science and FRI is built-in…The Ministry sees FRI as a competitor but still cooperates… FRI members understand that to advance matters in these difficult conditions is only through cooperation. This way, they secure some of their interests.”[11]</td>
<td></td>
</tr>
<tr>
<td>“We developed a model that allowed the government to work with universities according to predetermined criteria. This is a management model that never existed before.”[94] “Researchers were not used to being managed and told what to do with respect to their research focus and progress…[it seems] that scientists don’t know what they’re doing. Obviously, technology has not progressed properly in the past 200 years, so administrators need to teach them what to do!”[9]</td>
<td></td>
</tr>
<tr>
<td>“[FRI members often experienced] split personality, whereby at one time they lead their own ministries, but at another time, they are members of a collective whose interests are not always aligned with their individual interests.”[11] “Scientists wanted to enter this domain although they were not completely related to it because it was a lot sexier than their traditional disciplines, and many more resources were allocated to nano.”[29]</td>
<td></td>
</tr>
<tr>
<td>“Requesting that we hire people to help with commercialization really advanced commercialization here. Without the funds to hire hunters, there is no doubt that there would have been less commercial success.”[27]. “INNI does not merely connect the academia, government, and industry, but rather develops and enforces policy.”[18]</td>
<td></td>
</tr>
<tr>
<td>“The government couldn’t allocate to the Technion 26M$ without giving equal opportunities to the other research universities.”[11] “The matching model [TDM] raises the bar and creates opportunities.”[27] “…It is clear that had it not been for the TDM, the nanotechnology initiative would have progressed much slower.”[10] “…If scientists want to study the effects of rays of sun on bee reproduction, they can do so on their own time, not [with] taxpayers’ money.”[4] “…The purpose of the FTAs was to bridge the outcomes of the designated research at the universities and product R&D in the industry…The FTAs served as the basis for startup firms.”[39]</td>
<td></td>
</tr>
<tr>
<td>“It really helps us bring conferences to the country. It helps that we have a large number of researchers overall. We try to create that kind of collaborative atmosphere.”[27] “[The conference] attracts over two hundred scientists, and it is very lively.”[25]</td>
<td></td>
</tr>
<tr>
<td>“A real nano community was created. We [Center Directors’ Forum] nurture this all the time through seminars…we have an annual social event…and we have a world-class degree program.”[9]</td>
<td></td>
</tr>
<tr>
<td>“INNI is our evaluator…they make sure we don’t waste the money they gave us…they inspect our activities, give us grades and scores.”[27] “[Members of the Maydan Committee] have two roles. The first role is to assess.”[11] “[FRI’s Chairperson, Jacob Ziv, appointed a professional committee headed by Dr. Dan Maydan, to evaluate and recommend on the need of the State of Israel to enter the nano domain, and on the possibilities, action plans, and investments needed for Israel not to be left behind in the global competition.”[39]</td>
<td></td>
</tr>
</tbody>
</table>

Formalizing organizational metamorphosis

Resources

Direction

Administration

Identity

Roles

Allocation models

Enabling Mechanisms

Forums

Evaluation

Electronic copy available at: https://ssrn.com/abstract=4620965
Formally, INNI is the controller of nano activities on behalf of the government, and they do their work faithfully. They mainly monitor us, and while monitoring us, they give us scores and influence the budget. Like any organization that is monitored, this is usually valuable, if it is done fairly. The criteria can be somewhat subjective, but most of them are objective. They did a good job in reviewing and made the centers grow, rather than just waste the money. INNI’s management comes from the industry and the money comes from various government ministries; so they think they have a say in what should be done in academia. They come in and ask us what we are working on, whether it is applied, why it is not applied.

“INNI’s management comes from the industry and the money comes from various government ministries…so they think they have a say in what should be done in academia…They come in and ask us what we are working on, whether it is applied, why it is not applied.”

At the Weizmann they took $1 million from us. They punished us because we did not do what they wanted. They told us – your research is excellent, but does not fit the program.” [Sanctions worked] extremely well because everyone knew that if they do not behave as they should, well,…the fact is that center directors who did not cooperate in the beginning are cooperating today.”

“Sanctions worked extremely well because everyone knew that if they do not behave as they should, well,…the fact is that center directors who did not cooperate in the beginning are cooperating today.”

INNI often pushed and threatened indirectly that if the centers do not comply, then they will not receive funding for the next five years…and so everyone complied.

“What does it mean that the Technion alone will receive $26 million from public funds? Based on what? Where are the equal opportunities? You cannot allocate the public’s money like that.”

“The State Comptroller recognized the importance of this forum but said it is strange that it is voluntary. Why not formalize it?” FRI’s activity has an executive nature because of its ability to generate resources from the agencies that are part of FRI. It is better that FRI’s important activities would not be voluntary and would not depend on the goodwill of FRI’s members.

“INNI and the government were not at ease with the nano centers at the universities that managed themselves as academic units, having academic freedom, with faculty engaging in whatever is of interest to them. They would like us to focus on specific topics. Eventually INAB recommended that 70% of the funding will continue as before while 30% will be dedicated to the FTAs, topics with recognizable potential for commercialization.”

“INNI decided on the policies and rules of the nano centers.” “INNI’s unofficial mission was to not only bring money to universities and develop the centers, but to change the way the universities go about their business with regard to infrastructure and working with industry. INNI built the nano centers and was heavily invested in the universities, and tried through that to force the universities to start acting in a certain way. They told me straight up, we put so much money in this infrastructure, you are not going to pull the plug now.”

* [X] indicate the source for the quote based on the list of interviewees (see Table 1).
Figure 1: Indicators of emergence of the nanotechnology ecosystem in Israel

Electronic copy available at: https://ssrn.com/abstract=4620965
Figure 2: An inductive theory of innovation ecosystem emergence